Kizoom Limited, 109-123 Clifton Street, London EC2A 4LD. Tel: +44 207 749 2670

The Google Transit Feed Specification – Capabilities & Limitations

A Short Analysis

[image: image2.png]

Control sheet

Document Versions

	Date
	Author
	Version
	Description of changes

	2006/11/02
	Nick Knowles
	0
	First Draft

	2006/11/07
	Nick Knowles
	1.1
	Revised to include RS comments

	2007/06/03
	Nick Knowles
	1.3
	Updated to current GTFDS

	2007/07/02
	Nick Knowles
	1.4
	Revised to include MN & further RS comments

	2007/07/10
	Nick Knowles
	1.5
	Corrections

Related Documents

	Ref
	Date
	Author
	Version
	Document

	
	
	
	
	

	[TXC]
	UK Department for Transport (Nick Knowles Kizoom)
	UK Department for Transport (Nick Knowles Kizoom)
	2.1 (v35)

	TransXChange – An XML Standard for the Data Exchange of Bus Schedules and Related Information.

www.transxchange.org.uk

	[NaPTAN]
	2005/10/10
	UK Department for Transport (Nick Knowles Kizoom)
	2.1 (v35)

	
NaPTAN & NPTG Schema User Guide

www.naptan.org.uk

	[Transmodel]
	2001/06/01
	Cen WG3 TC278
	5.1
	CEN TC278, Reference Data Model For Public Transport, ENV12896 revised, June 2001.

	[IFOPT]
	2007
	prCen WG3 TC278
	
	

Document Automation & Copyright Notice

	Supplier:

Kizoom Ltd

109-123 Clifton Street, London EC2A 4LD

Telephone: +44 (0)20 7269 9890

Facsimile: +44 (0)20 7269 9891

Company Registration Number : 3745127

Company VAT Number : 735 9033 27

EU VAT Number : GB 735 9033 27
	.

	Authors:

Nicholas Knowles, Kizoom

Position: CTO

	

This document is © Crown Copyright, Kizoom 2006, 2007

Copyright of the Google Transit Feed Specification is subject to a Creative Commons License see

http://creativecommons.org/licenses/by-sa/2.5/ and the terms of this license apply to the GTFS content used in this document.

Table of Contents

41
Introduction

41.1
References & Examples

41.1.1
GTFS

41.1.2
Transmodel

41.2
Related tools

51.3
Presentation conventions

51.4
Acknowledgements

61.5
Summary

61.5.1
Model

61.5.2
Terminology

71.5.3
Technology

81.5.4
Business issues

81.5.5
Scaling

81.6
What is the Google Transit Feed Specification good for?

81.6.1
Stops

91.6.2
Location & Projection

91.6.3
Connection /Interchange Model

91.6.4
Fares

101.6.5
Mode

101.6.6
Agency / Authority /Operator

101.6.7
Conclusion

102
GTFS Element by Element Comparison

102.1
Overview of GTFS Components

122.2
UML Diagram of Google model

132.3
agency.txt (AUTHORITY)

132.3.1
Comments:

132.4
stops.txt Table (STOP POINT)

132.4.1
Comments

152.5
routes.txt (LINE / ROUTE)

152.5.1
Comments

172.6
Trips.txt (VEHICLE JOURNEY)

182.7
stop_times.txt (STOP IN SEQUENCE | CALL)

182.7.1
Comments

212.8
calendar.txt (VALIDITY CONDITION)

212.8.1
Comments

222.9
calendar_dates.txt (VALIDITY CONDITION)

222.9.1
Comments

232.10
fare_attributes.txt (FARE PRODUCT)

232.10.1
Comments

242.11
fare_rules.txt (DISTANCE MATRIX)

242.11.1
Comments

252.12
shapes.txt ()

252.12.1
Comments

262.13
frequency.txt ()

262.13.1
Comments

1 Introduction

Google Transit is one of a number of innovative Google services such as Google Maps, which provide rich search functions using a free-to-user business model funded by Google’s location aware advertising.

In summer 2006 the Google Transit (http://www.google.com/transit) site published a new data exchange format, Google Transit Data Feed Specification (GTFS), through which Transport authorities can make their data available to the Google transit site.

This short note, originally prepared in Autumn 2006 at the request of Roger Slevin of the DfT, and subsequently updated in Summer 2007 to reflect enhancements to the GTFS format, makes a quick assessment of the Google Transit Data Feed Specification to assess its potential capabilities.

It includes an outline comparison of elements in UK standards that cover a similar domain, such as [NaPTAN] and [TransXChange] and at the European level, Transmodel together with related emerging standards such as SIRI and IFOPT.

1.1 References & Examples

1.1.1 GTFS

The Google Transit Feed specification can be found at

http://code.google.com/transit/spec/transit_feed_specification.htm
The Google Transit Feed Specification is still undergoing frequent change. This paper is based on the latest version as of June 2007. The GTFS is made available under a free licence.

Since the GTFS was first issued in September 2006 there have been four major revisions and four minor (correcting typos etc) revisions. Most of the revisions have added features or clarified the contents of fields, but some have also removed features. At present there is no version numbering of revisions, only a date of issue.

To date there are at least twelve US transit authorities that have provided data. The flagship networks are Portland and Seattle. In the UK Transport for London has experimented with Google, and traveline south east has supplied data which has not yet appeared on the public Google Transit service (but does appear on Google Maps).

Note that adding Stops to Google can be done through a separate API and Google already shows TfL stations as active points that link to the TfL journey planner

1.1.2 Transmodel

The CEN standard Transmodel specification can be found at http://www.Transmodel.org/
The Identity of Fixed Objects in Public Transport IFOPT is a prCEN work item that extends refines some Transmodel concepts for Stop Places, that is stations, stops and transport interchanges http://www.naptan.org.uk/ifopt/
1.2 Related tools

An interesting recent further development for GTFS is a third party open-source tool to convert TransXChange documents into Google Transit format. See

http://www.googletransitdatafeed.org/wiki/index.php?title=Main_Page
1.3 Presentation conventions

We follow conventional practice of using UPPER CASE for Transmodel entities and BoldItalicCamelCase for XML Schema Elements from TransXChange, NaPTAN, etc.

1.4 Acknowledgements

The paper has been prepared by Nick Knowles, CTO of Kizoom. I am grateful to Peter Miller of ITO World Ltd who sent me his own independent notes while I was working on the on the original paper, and for Roger Slevin's guidance and own expert review comments.

For this updated version of the paper I also thank Mike Ness, author of the original ATCO CIF format and of NaPTAN, for his valuable additional comments observations and corrections, and Peter Miller for further corrections.

1.5 Summary

GTFS is for the static exchange of public transport stop and schedule data, performing a role similar to that of TransXChange (and the legacy ATCO-CIF format) in the UK travel information distribution chain. Google subsequently process the data into their own binary representation inside their own journey planner engines. Among the tasks that Google will need to do are the reconciliation of different data reference systems such as for stop identifiers and names, not only to ensure uniqueness but also to establish equivalence where relevant, for example, when different authorities use different names for the same stop.

The Transit API clearly strives for the Google design virtues of minimalism and simplicity, but has done this at the price of being fairly simplistic as to representation, and in terms of technology and modelling appears to be comparable with first generation file formats used in Europe in the 90’s such as RAIL-CIF and ATCO-CIF. For basic travel information functions, such as single mode stop departures, it looks adequate, but it does not capture sufficient data to support rich multimodal, multi-operator journey planning. (This possibly reflects antecedents covering of US single mode urban transit networks run by a single agency). Since it has a single agency focus, it may well be that the API is the preferred format of one of the US transit operators for journey planning that has been promoted to become the Google API, rather than a fully evolved standard that addresses the issues of distributed data integration and a range of operational purposes.

1.5.1 Model

The GTFS model (which is implicit in the GT file structure rather than being explicitly described as a formal model) describes a timetable and broadly corresponds in scope to core aspects of TransXChange and NaPTAN (for stops). However, it has only a basic representation of a timetable and lacks some fundamental abstractions that are important for more complex PT JP functions and for operational data. For example, there is no separation of service pattern or journey pattern from vehicle journey (so no reuse of information layers); it uses a point in sequence rather than link model (which means it cannot support different data that applies to the use of the link rather than the stop), and Stops are defined only at a single level – either a whole station (in effect an IFOPT STOP PLACE), or a single “stop point” (in effect an IFOPT QUAY), where the “stop place” is not directly stated.

In particular the model lacks a number of features that would make it useful for other purposes such as exchanging operational data. Since supporting operational applications is not the express purpose of GTFS this is not a criticism – but it would be a major limitation on its use as a general purpose format, compared say with the versatility of the European standards based on a more comprehensive conceptual model. The GTFS modelling is apparently ‘isolationist’ in showing no awareness of Transmodel or other CEN European work in the problem domain.

The GTFS tool site does include a TransXChange converter that proves a mapping of models is possible.

1.5.2 Terminology

GTFS uses United States English terminology (‘schedule’, ‘route’, ‘trip’, ‘drop off’, etc) with ad hoc definitions of its terms.

One of the achievements of Transmodel has been to establish a precise vocabulary for modelling the Public Transport application domain. This is especially important for Public Transport where the vernacular uses of terms such as “route”, “journey”, “trip”, or “stop”, covers a wide range of overlapping concepts. In the past, different implementors of PT applications have chosen the same terms to describe different concepts – and different terms to describe the same concepts -- leading to confusion when systems need to be compared. This of course is further compounded by slightly different semantic mappings of concepts into different European languages -- and even between different English dialects! Transmodel assigns more precise technical meanings to its chosen terms, typically reserving the use of a particular word for a single concept. Thus, to give just two examples among hundreds; it distinguishes between a TRIP (the journey made by the passenger), and a VEHICLE JOURNEY (the journey made by the vehicle), and between a VEHICLE JOURNEY (a timetabled journey in a general timetable that will run on a specific time on a DAY TYPE throughout the period of applicability of the schedule, e.g. Mondays) and a DATED VEHICLE JOURNEY (as specific journey that runs on a specific calendar date).

It can be further remarked that some apparently simple concepts such as a ‘route’ or a ‘stop’ can need quite subtle abstractions to capture them.

1.5.3 Technology

Technically the GTFS is old fashioned and brittle: it uses separate CSV files zipped up together to make up the parts of a timetable; the model and data assumptions are not clearly articulated; and there are number of ambiguities and inconsistencies. There is no proper metadata – not even schema versioning numbers - so managing changes to the format will be difficult. The avoidance of XML is in particular surprising, as this could have been used to provide the data in a single self-validating file and remove many uncertainties in the interpretation. This may well reflect current technical expertise among US transport operators. It does have the advantage of being less verbose than XML, but makes diagnosing errors much harder.

Other Google APIs, such as the link API for the Google maps, use XML, so the use of CSV for Google Transit is in many ways a surprising choice, especially given that Public Transport data structures are inherently complex. One might remark that the weaknesses of the csv technology and imprecision is primarily an issue for Google, who must process the data, rather than for the operators supplying the data, but in practice the looseness of the GTFS makes one question whether even Google could sustain the support levels needed to process many different sources sending large amounts of data on a frequent basis (transit data, particularly in the UK, changes very frequently) and to correct it to the necessary degree of accuracy for it to be usable.

The supply of data to Google in GTFS assumes a complete set of data is contained in a single set of files. There is no mechanism for partial updates. Also there is no mechanism for submitting multiple files of the same type e.g. separate trip files for each route. This may become a problem when creating GTFS files from another format that have a more fine grained packaging, such as from multiple TransXChange documents which are service specific.

The Google Transit documentation is rather thin, with some ambiguities and a number of inconsistencies and even a few direct contradictions (e.g. fields that are described as required in one place and optional in another) that could lead to errors of interpretation. It does not have a systematic set of examples for complex cases such as circular or cloverleaf routes.

The GTFS specification provides examples of how various data fields become part of the output.

1.5.4 Business issues

The Google commercial model is probably the most innovative aspect of the Transit service – to operators it offers the prospect of having free journey planning provided by Google in return for their data. To users it offers an integrated, easy-to-use information source for simple transit domains.

Although Google Transit will provide a journey planning service, Google’s current stated position is that they do not expect to be a replacement for conventional journey planning and information systems, which will always offer much richer information. To that extent, it may be better to consider Google Transit as an index to the underlying conventional systems, offering by way of example a quick journey plan to meet a Google enquirer’s requirements, or to make them aware of what forms of transport are available and where to find out more about them.

The effort required to make data available in Google format and keep it up to date with changes to the GTFS interface is placed on the operator.

1.5.5 Scaling

The GTFS does not give any indications or guarantees as to the Quality of Service that will be provided as to important practical aspects such as responsiveness, availability etc. Although Google generally has a very good record on such issues, and there are economies of scale to be obtained by pooling capacity, dynamic journey-planning applications involve different technological considerations and scaling constraints. For example the sheer number of permutations precludes common optimisation techniques such as static pre-computation. The computational complexity of journey planning does not scale linearly with the number of nodes and although various strategies can be used to support large scale multimodal journey planning, these require additional unifying conceptual models and a degree of coordination of data (as for the UK JourneyWeb or the German Delfi projects). Such considerations (and the vulnerability of service delivery to force majeure through the location of the servers) would also be issues to consider for an operator using Google as its sole delivery channel.

1.6 What is the Google Transit Feed Specification good for?

GTFS has the elements necessary to provide basic stop finding, journey planning and stop departure services. Its main shortcomings are in having no way to describe preferred journey connections or interchanges, so journey planners seeking to provide the optimum combination of journey legs would lack important information for assessing connection penalties and weighting particular routes. The lack of a specific interchange model means that neither detailed connection times nor routing constraints can be specified. The missing elements mean that the possible services delivered by GT are more likely to be akin to first generation online journey planners in Europe rather than the ‘joined-up’ modern engines.

Google has been improving the specification and has corrected a number of omissions – for example there was originally no explicit notion of Frequent Service (now handled by the frequency.txt), or clear expression of journey direction. There is still no multilingual support of names.

In some cases deficiencies or lacuna in GTFS can be compensated by additional computation by the Google engines.

1.6.1 Stops

Stops can be included in GTFS at a single level of precision, i.e. for individual poles, bays or platforms (QUAYs), a pair of on-street stops, or a whole station (STOP PLACE). However the relationship between stop points is not clearly articulated Aggregation or disaggregation of stops must be undertaken by the GT engine

The output is oriented towards North American practice and makes use of textual route names and directions.

There is no explicit means of associating stops semantically with other stops (though proximity can be used to imply this) and Stop descriptions appear to be based on a high level model of stops (i.e. a single name for station or interchange, not the more detailed platform or side of street model used by NaPTAN and IFOPT. There appears to be no concept of alternative names as in NaPTAN.

1.6.2 Location & Projection

Stop & Route Coordinates, used to create mapping output, are always in WGS84 latitude and longitude. There are no facilities to take other coordinate systems e.g. OSGR. Given there are well known transforms, WGS84 is a reasonable choice – but again puts the onus on data suppliers to convert from other coordinate reference systems.

Projection onto topographic area is purely via coordinate, and not accompanied by explicit association with topographic locality, as between NaPTAN stops and the UK National Public Transport Gazetteer (NPTG) localities. Google is of course able to use its own location and point of interest model for this purpose. However PT gazetteer models such as those in NPTG and IFOPT formalise additional location concepts that are specific for travel and that may involve more than simple proximity. (For example airports and stations are not necessarily physically located in the places that they serve).

1.6.3 Connection /Interchange Model

GTFS does not contain any interchange or walk link information. The GT search engine uses a proximity test, based on latitude/longitude, to find suitable interchanges. Generally this works, but can occasionally lead to walking over water as there is no way of describing barriers. It does not always hold well for gated networks, or for routes for which other considerations apply (such as the complex fare restrictions in the UK rail network, or physical constraints of metro or rail stations). In a multimodal network stops a few feet apart may have very different transfer penalties.

The GTFS model is probably more that adequate for US bus services. In Europe, where there are also richer multimodal services, there is a general progression to more detailed digitalisations of the Stop Place to allow fine grained journey planning as well as accessibility planning.

Walk speeds are not specified but are supplied generically by the Google Transit Engines. The actual Walk speeds are perhaps a little fast for the elderly and there is no way of adjusting them.

There is a flaw in the search engine which means some journeys start with a walk to a short bus leg followed by a long wait for a second bus, when a better journey would be a slightly longer walk directly to the second bus avoiding the long wait. The engine does not always give earliest arrival with latest departure.

1.6.4 Fares

GTFS has a basic tariff zone structure, but not stage fares – and there is no way to specify vehicle journey level availability conditions – or complex Fare Product usage rules as are found for UK rail.

1.6.5 Mode

Transport mode is at the trip (vehicle journey level) not the stop level. There is a single operator per timetable so multi-operator services cannot be accommodated without a proxy for a joint operator.

At present the GT search engine does not appear to have any way of selecting modes or operators, all are included in the search and mode is only used to create an icon on the output.

1.6.6 Agency / Authority /Operator

In the original GTFS there was no concept of multiple agencies, nor of overlapping data sourcing – and whilst improvements have been made in this respect, there are still gaps against the complex UK organisational model, where Transport Direct, Traveline Region, Operator and Local Transport Authority all potentially are relevant to the provision of supplementary information, as well as sourcing the raw data. Transmodel makes a distinction between the different roles of OPERATOR, AUTHORITY, information service provider etc and a wide range of organisational models are found in the real-world.

GTFS now includes fields for url’s linking to agency, stop and individual route web sites.

1.6.7 Conclusion

Overall GTFS looks like it is good example of the 80 /20 rule, giving a reasonable coverage of the large majority of cases for single mode and single trip journey planning but not addressing more complex cases.

2 GTFS Element by Element Comparison

The following section provides a brief commentary on the Google Transit Feed Specification, relating the elements to Transmodel, TransXChange and NaPTAN standards.

We have not done a full gap analysis of the functions in TransXChange and NaPTAN that are missing from the GTFS (nor the even wider set of Transmodel capabilities), but in the summary and comments we have highlighted a few key features, most notably the lack of connection information, multi-operator support, and a more detailed stop model.

Note that in translating terminology here and elsewhere one should be aware of a number of “False friends”; that is, the same term being used in GT and Transmodel based standards for what is actually a different concept. For example “Route” is described in the Google documentation as “a sequence of two or more stops” (i.e. a Transmodel SERVICE PATTERN) but the usage in the GTFS corresponds more to a Transmodel LINE i.e. merely a loose descriptive identification of a set of journeys following a similar set of service patterns and marketed to the public as a named service. The only detailed service pattern is found in the GT “Trips” file.

2.1 Overview of GTFS Components

Each version of schedule data is sent as a set of CSV tables, encapsulated as a zip file. Table 2‑1 shows the CSV tables making up the GTFS. On the right are the equivalent Transmodel and UK TransXChange XML standard concepts

V1 indicates a file or element that was in the Nov 2006 version of the GTFS. V2 indicates versions added up to June 2007

	
	Google File
	
	Contents
	Transmodel Concept
	UK / TransXChange Standard

	V1
	agency.txt
	Required
	Information about the transit agency.
	OPERATOR AUTHORITY
	TransXChange/ Operator

	V1
	stops.txt
	Required
	Information about individual locations where vehicles pick up or drop off passengers.
	IFOPT / STOP PLACE

TARIFF ZONE

	NaPTAN / StopPoint

NPTG NptgLocality

TransXChange / FareStage

	V1
	routes.txt
	Required
	Information about a transit organization's routes. A route is a sequence of two or more stops.
	LINE
	TransXChange / Line

TransXChange / Service / Description

	V1
	trips.txt
	Required
	Information about scheduled service along a particular route. Trips consist of two or more stops that are made at regularly scheduled intervals.
	TIMETABLE

JOURNEY PATTERN

VEHICLE JOURNEY
	TransXChange / VehicleJourney

	V1
	stop_times.txt
	Required
	Lists the times that a vehicle arrives at and departs from individual stops for each trip along a route.
	PASSINGTIMES / CALL
	TransXChange / VehicleJourney

	V1
	calendar.txt
	Required
	Defines service categories. Each category indicates the days that service starts and ends as well as the days that service is available.
	VALIDITY CONDITION

DAY TYPE

PERIOD, DAY OF WEEK
	TransXChange / OperationalProfile RegularDayType/ Day Of Week

	V1
	calendar_dates.txt
	Optional
	Lists exceptions for the service categories defined in the calendar.txt file.
	VALIDITY CONDITION
	TransXChange / OperationalProfile

	V1
	fare_attributes.txt
	Optional
	Defines fare information for a transit organization's routes.
	FARE TYPE
	-

	V1
	fare_rules.txt
	Optional
	defines the rules for applying fare information for a transit organization's
	DISTANCE MATRIX
	-

	V2
	shapes.txt
	Optional
	Provides rules for drawing lines on a map to represent a transit organization's routes.
	LINK PROJECTION
	TransXChange/ Route/Track

	V2
	frequencies.txt
	Optional
	Provides the headway (time between trips) for routes with variable frequency of service.
	
	TransXChange / VehicleJourney

Table 2‑1 Google Transit Feed Specification tables

2.2 UML Diagram of Google model

Figure 2‑1 shows a UML diagram of the GTFS model reverse engineered from the GTFS documentation. A number of GT elements (e.g. service, fare, zone) are implicit i.e. not actually represented by a concrete table. Others correspond to a aggregation of separate Transmodel abstractions. For example, stop_times, like the SIRI Call, aggregates STOP IN SEQUENCE with PASSING TIMES.

Please note this is our interpretation, not an official GT Transit artefact. The colours correspond to those used in UK documentation (Green = NaPTAN/NPTG, Yellow = TXC, grey = base data types, Blue= Fares, etc)

[image: image1.emf]route_id() : nmtoken

service_id() : nmtoken

trip_headsign() : string

direction_id() : boolean

block_id() : nmtoken

shape_id()

trips

tripId : nmtoken

arrival_time() : time

departure_time() : time

pickup_type() : activityEnum

drop_off_type() : activityEnum

stop_times

trip_id : nmtoken

stop_id : nmtoken

stop_sequence : stop_times

Monday() : boolean

Tuesday() : boolean

Wednesday() : boolean

Thursday() : boolean

Friday() : boolean

Saturday() : boolean

Sunday() : boolean

start_date() : date

end_date() : date

calendar

service_id

1

*

calls

«enumeration»

activityEnum

0 = Regular

1 = NoPickup

2 = DrtPhone

3 = DrtDriver

date() : date

exception_type() : availabilityEnum

calendar_dates

service_id

service

-service_Id

1

*

validity condition

1

*

vehicle journeys

1

*

exceptions

«enumeration»

availabilityEnum

1 = available

2 = notAvailable

stop_name() : string

stop_desc() : string

stop_lat() : lat

stop_lon() : lon

zone_id() : nmtoken

stop_url() : url

stops

stop_id : nmtoken

1

*

stop

price() : amount

currency_type() : isoCurrency

payment_method() : paymentMethodEnum

transfers() : transfersPermittedEnum

transfer_duration() : seconds

fares_attributes

fare_id : nmtoken

-country_id : nmtoken

IsoCountry

route_short_name() : string

route_long_name() : string

route_desc() : string

route_type() : modeEnum

route_url() : url

route_color() : hexColourValue

route_text_color() : hexColourValue

route_id

route_id : nmtoken

«enumeration»

modeEnum

0 = Bus

1 = Ferry

2 = Rail

3 = Subway

4 = Tram

5 = Cablecar

6 = Funicular

1

*

route/line

*

0..1

tarrif zone

block

-block_id

1

*

block

«enumeration»

paymentMethodEnum

0 = onBoard

1 = beforeBoarding

«enumeration»

transfersPermittedEnum

0 = none

1 = one

2 = two

3 = unlimited

IsoCurrency

currency_type : isoCurrency

*

0..1

currency

origin_id() : nmtoken

destination_id() : nmtoken

contains_id() : nmtoken

fares_rules

fare_id : nmtoken

route_id : nmtoken

fare

fare_id : nmtoken

1

*

rules

1

1

fare price

zone

zone_id : nmtoken

0..1

*

origin zone

0..1

*

destination zone

0..1

*

contains tarrif zone zone

Google Transit Feed

Specification (2007/06/20)

© 2007

1

*

distance matrix

agency_name() : string

agency_url() : url

agency_timezone() : timezone

angency_lang() : isoLang

agency

agency_id : string

1

*

routes

shape_pt_lat() : lat

shape_pt_lon() : lon

shape_pt_sequence() : integer

shape_dist_travel() : distance

shape_id : nmtoken

shape

*

0..1

link projection

«uses»

«uses»

«uses»

«uses»

«uses»

TM VALIDITY

 CONDITION

TM: VEHICLE

JOURNEY

TM: STOP IN

SEQUENCE

+ PASSING

TIMES

TM: TARIFF

ZONE

TM: ROUTE

 + LINE

TM: AUTHORITY or

OPERATOR

TM: SCHEDULED

 STOP POINT

TM: LINK

PROJECTION

TM: BLOCK

TM: FARE

PRODUCT

TM: DISTANCE

MATRIX

Figure 2‑1 UML diagram of Google Transit entities

2.3 agency.txt (AUTHORITY)

2.3.1 Comments:

A GTFS Agency corresponds to the Transmodel concept of AUTHORITY. The original version of GTFS supported one agency is allowed per file, i.e. there was no notion of suborganisation, or of multiple operators. It has now been refined to allow multiple agencies. Transmodel distinguishes between an OPERATOR and an AUTHORITY, and OPERATIONAL UNIT, allowing the attribution of services to operators in multi operator timetables (as say on UK Rail, or London Buses). However the AGENCY can be used for the operator for practical purposes. Even this, however, is limiting in the UK where there are distinct roles for operator, local authority, traveline region and Transport Direct, the last being an information service provider. There is no easy way yet to deal with overlaps between operators or agencies. Whilst the AGENCY can be used for the operator for practical purposes, such work-arounds need to tie in the way that Google presents data when it appears in search results, especially if there different organisations that need to be linked to for different purposes.

Inclusion of a time-zone is needed because they don’t use full ISO dateTime format in the actual files.

Language and URL are useful presentation related values.

	
	Field Name
	Use
	Type
	Description
	Equivalent

	V2
	agency_id
	Optional, Unique
	string
	Uniquely identifies a transit agency. A transit feed may represent data from more than one agency. The agency_id is dataset unique. This field is optional for transit feeds that only contain data for a single agency.
	AUTHORITY ID

(NB distinct concept, though often same as from Operator)

OperatorCode

	V1
	agency_name
	Required
	string
	Name of the transit agency. Example TriMet
	AUTHORITY NAME

OperatorShort​Name

	V1
	agency_url
	Required
	url
	fully qualified URL for agency Example: http://www.trimet.org
	--

	V1
	agency_timezone
	Required
	time​zone
	timezone where the transit agency is located. See http://en.wikipedia.org/wiki/List_of_tz_zones

Example(s): America/Los_Angeles
	--

	V2
	agency_lang
	Optional
	lang
	two-letter ISO 639-1 code for the primary language used by this transit agency. This setting defines capitalization rules and other language-specific settings for all text contained in this transit agency's feed. Please refer to http://www.loc.gov/standards/iso639-2/php/code_list.php for a list of valid values.
	--

Table 2‑2 GT Agency Table

2.4 stops.txt Table (STOP POINT)
2.4.1 Comments

The stops.txt file provides a basic STOP POINT and ADDRESS model, similar to that of NaPTAN. It appears to assume a high level representation, that is intending just one stop name per PT access point for all modes of transport that visit it (The GT stop itself does not include a mode at all).

This is straightforward for Stations, which can be represented by their entrance or a midpoint rather than by each platform. For a pair of on street bus stops with the same “search name” (e.g. Trafalgar Square) if one wants to locate the individual stops unambiguously one must use distinct stops – as the current CIF/TXC converters do. However because the GTFS has no concept of stop area, the explicit association between the stops is lost unless they share some of their common name.

· The model requires use of uniform unique stop identifiers by the transit authority. In the UK NaPTAN identifiers can be used (and the repeated supply of stop data with every single timetable could be avoided).

· There is no explicit support for hail and ride sections or zonal stops, but since a GIS point is optional, there is nothing to prevent one using an unlocalised stop point for this purpose.

· The encapsulation through a zip requires all inclusion data elements, including stops to be exchanged with every timetable version, a slight redundancy. In practice different element types change at different rates: timetables are more volatile that stops for example.

· Agency specific urls can be used to provided stop specific “page-landed” links to journey planners and other sites.
	
	Field Name
	Use
	Type
	Description
	Equivalent

	V1
	stop_id
	Required, Unique
	nmtoken
	ID that uniquely identifies a stop. Multiple routes may use the same stop. Example(s): S81NATHIST
	STOP PLACE

NaPTAN/ StopPoint

	V1
	stop_name
	Required
	string
	The name of a stop. A name that people will understand in the local and tourist vernacular. Example(s): 81 St-Museum of Natural History
	NaPTAN / CommonName

	V1
	stop_desc
	Required
	string
	Description of a stop. Please provide useful, quality information. Do not simply duplicate the name of the stop.
Example(s): The 81 St-Museum of Natural History stop is located at the southwest corner of the intersection at West 81st St. and Central Park West. The stop is two blocks south of the American Museum of Natural History.
	NaPTAN descriptor elements e.g. indicator, crossing etc

	V1
	stop_lat
	Required
	WGS 84 geodetic datum.
	The latitude of a stop. The field value should contain a WGS 84 geodetic datum. Example(s): 40.781969
	POINT

NaPTAN / StopPoint / Place / Location

	V1
	stop_lon
	Required
	WGS 84 geodetic datum.
	The longitude of a stop. The field value should contain a WGS 84 geodetic datum. Example(s): 73.972011
	POINT

NaPTAN / StopPoint / Place / Location

	V1
	zone_id
	Optional
	nmtoken
	 The fare zone for a stop. Zone IDs are required if you want to provide fare information using fare_rules.txt. Example(s):2
	TARIFF ZONE

	V2
	stop_url
	Optional
	
	the URL of a web page about a particular stop. This should be different from the agency_url and the route_url fields.
	--

Table 2‑3 GT Stops Table

In the original GTFS, gazetteering data was included but this has been dropped in the latest version, presumably because Google’s other location search facilities can be used. The following have been dropped in V2.

	D2
	stop_street
	Optional if stop_lat and stop_lon fields are provided.
	string
	Identifies the street address of a stop. Example(s):393 7th Ave.

Optional if stop_lat and stop_lon fields are provided.
	ADDRESS
NaPTAN / StopPoint / Descriptor/ Street

	D2
	stop_city
	
	string
	The city where a stop is located. Example(s):New York

Optional if stop_lat and stop_lon fields are provided.
	ADDRESS

NaPTAN / StopPoint / Place / Town

	D2
	stop_region
	
	string
	State or region where a stop is located. Example(s):NY

Optional if stop_lat and stop_lon fields are provided.
	ADDRESS
NaPTAN / StopPoint / Place / NptgLocality

	D2
	stop_postcode
	
	string
	The postal code or zip code for a stop. Example(s):10001

Optional if stop_lat and stop_lon fields are provided.
	ADDRESS

	D2
	stop_country
	
	Country code
	The ISO 3166 country code for a stop. Example(s):US

Optional if stop_lat and stop_lon fields are provided.
	ADDRESS

(NptgLocality Region)

2.5 routes.txt (LINE / ROUTE)

2.5.1 Comments

The GT route entity in effect combines in a single concept notions of ROUTE, LINE, Service and SERVICE PATTERN. Transmodel (and TransXChange) use a more elaborated model which separates out the service patterns (the sequences of stops making up the route) from the grouping as a named LINE for marketing and public information purposes of journeys that follow similar but not necessarily exactly the same service patterns. The Transmodel approach allows a large degree of reuse of elements and also preserves structural data that may be of use other applications, e.g. scheduling or AVL systems.

The actual GT routes.txt table holds service and line attributes.

At the service or route level the operational profile is described largely textually.

	
	Field Name
	Use
	Type
	Description
	Equivalent

	V2
	agency_id
	Optional
	nmtoken
	an agency for the specified route. This value is referenced from the agency.txt file. Use this field when you are providing data for routes from more than one agency.
	

	V1
	route_id
	Required, Unique
	nmtoken
	An ID that uniquely identifies a route. Example(s): R17X
	ROUTE, LINE
TransXChange / Route / Id

	V1
	route_short_name
	Required
	string
	Short name of a route. This will often be the route number or route character(s). If the route does not have a short name, please use an empty string as the value for this field.

Example(s): f the route full name is 17-NW 21st Ave/St Helens Rd, then provide 17 as the route_short_name value.
	TransXChange Service/ Line / LineName

	V1
	route_long_name
	Required
	string
	Full name of a route. This name will often include the route's destination or stop. If the route does not have a long name, please use an empty string as the value for this field.

Example(s): If the route full name is 17-NW 21st Ave/St Helens Rd, then please provide NW 21st Ave/St Helens Rd as the route_long_name value.
	TransXChange / Route / Description

	V1
	route_desc
	Optional
	string
	A description of a route. Please provide useful, quality information. Do not simply duplicate the name of the route.
Example(s): A trains operate between Inwood-207 St, Manhattan and Far Rockaway-Mott Avenue, Queens at all times. Also from about 6AM until about midnight, additional A trains operate between Inwood-207 St and Lefferts Boulevard (trains typically alternate between Lefferts Blvd and Far Rockaway.
	TransXChange / Service/ Description

TransXChange / Service/ OperationalProfile

	V1
	route_type
	Required
	0 - Tram
1 - Subway
2 - Rail
3 - Bus
4 – Ferry
5 - CableCar
6 - Gondola
7- Funicular
	The type of transportation used on a route. Valid values for this field are: Example(s): 0
	MODE

TransXChange / Service/ Mode

NaPTAN Stop type

	V2
	route_url
	Optional
	
	The route_url field contains the URL of a web page about that particular route. This should be different from the agency_url.

The value must be a fully qualified URL that includes http:// or https://, and any special characters in the URL must be correctly escaped. See http://www.w3.org/Addressing/URL/4_URI_Recommentations.html for a description of how to create fully qualified URL values.
	--

	V2
	route_color
	Optional
	
	the route_color field defines a color that corresponds to a route. The color must be provided as a hexadecimal number. If the route_color makes overlaid text difficult to read, specify a contrasting text color with the route_text_color field.
	--

	V2
	route_text_color
	Optional
	
	The route_text_color field can be used to specify a legible color to use for text drawn against a background of route_color.
	--

Table 2‑4 GT Route Table

2.6 Trips.txt (VEHICLE JOURNEY)

The GT trips entity in effect provides representation of a VEHICLE JOURNEY. Note that in Transmodel the term TRIP is used for the itinerary of the passenger, not the vehicle.

The inclusion of Block allows journey planners to infer whether a change is needed on certain route topologies, e.g. circular routes.

A significant addition in V2 is the addition of a Shape element, corresponding to a TransXChange Route/Track and allowing the projection of a specific path on a map from a route.

	
	Field Name
	Use
	Type
	Description
	Equivalent

	V1
	route_id
	Required,
	nmtoken
	ID that uniquely identifies a route. This value is referenced from the routes.txt file. Example(s): R17X
	ROUTE / SERVICE PATTERN identifier

TransXChange / JourneyPatternCode (RouteCode/

	V1
	service_id
	Required
	nmtoken
	ID that uniquely identifies a set of dates when service is available for one or more routes. This value is referenced from the calendar.txt file. Example(s): WE
	TransXChange / ServiceCode/

	V1
	trip_id
	Required Unique
	nmtoken
	An ID that identifies a trip. Example(s):1AWE
	VEHICLE JOURNEY identifier

TransXChange / VehicleJourneyCode /

	V1
	trip_headsign
	Optional
	string
	The text that appears on a sign in the vehicle that identifies the trip's destination to passengers. Example(s): Montgomery Park
	DESTINATION DISPLAY

TransXChange / VehicleJourney / DestinationDisplay

	V2
	direction_id
	Optional
	boolean
	Optional. The direction_id field contains a binary value that indicates the direction of travel for a trip. Use this field to distinguish between bi-directional trips with the same route_id. This field is not used in routing; it provides a way to separate trips by direction when publishing time tables. You can specify names for each direction with the trip_headsign field.

· 0 - travel in one direction (e.g. outbound travel)

· 1 - travel in the opposite direction (e.g. inbound travel)

For example, you could use the trip_headsign and direction_id fields together to assign a name to travel in each direction on trip "1234", the trips.txt file would contain these rows for use in time tables:

trip_id, ... ,trip_headsign,direction_id
1234, ... , to Airport,0
1234, ... , to Downtown,1

	DIRECTION

TransXChange/Route/Direction

	V1
	block_id
	Optional
	nmtoken
	The block to which the trip belongs. A block consists of two or more sequential trips made using the same vehicle, where a passenger can transfer from one trip to the next just by staying in the vehicle. The block_id is dataset unique. Example(s): B1AWE
	BLOCK identifier

TransXChange / VehicleJourney / DestinationDisplay

	V2
	shape_id
	Optional
	nmtoken
	an ID that defines a shape for the trip. This value is referenced from the shapes.txt file. The shapes.txt file allows you to define how a line should be drawn on the map to represent a trip.
	LINK PROJECTION

TransXChange/Route/Track/Mapping

Table 2‑5 GT Trips Table

2.7 stop_times.txt (STOP IN SEQUENCE | CALL)

2.7.1 Comments

The GT stop_times entity provides a STOP IN SEQUENCE representation of a VEHICLE JOURNEY, aggregating TIMETABLED PASSING TIMES together with stop activity, and in effect combining the Transmodel notions of SERVICE PATTERN and JOURNEY PATTERN. This is a common practical representation of a vehicle journey; used for example by the SIRI Call element for both planned and estimated timetables.

TransXChange uses the alternative Transmodel representation of a VEHICLE JOURNEY as a SEQUENCE of TIMING LINKs, which allows additional information to be captured, but requires more processing to interpret.

The Google documentation guidance on interpolation is somewhat cryptic, but if it is suggesting that Google will undertake interpolation this would probably be a source of concern to some operators.

The use of “local time” rather than UTC is unfortunate if there are cross timezone trips or variable summer time.

	
	Field Name
	Use
	Type
	Description
	Equivalent

	V1
	trip_id
	Required, Unique
	nmtoken
	ID that identifies a trip. This value is referenced from the trips.txt file.

Example(s): 1AWE
	VALIDITY CONDITION

TransXChange / … OperationalProfile / RegularDayType/ DaysOfWeek

May be stated at Service, JourneyPattern or VehicleJourney level.

	V1
	arrival_time
	Required
	HH:MM:SS local time
	The arrival time at a specific stop for a specific trip on a route. The value should be expressed in HH:MM:SS local time after midnight of the day on which the trip begins.

Please include all times for stops that are time points. Arrival times for the first and last stop in a trip are required. All other arrival times are optional and, if unavailable, may be represented with an empty string value. Stops without arrival times will be scheduled based on the nearest preceding timed stop. Do not interpolate stops

Example(s): The following columns list stop times for a trip and the proper way to express those times in the arrival_time field:

Time

arrival_time value

08:10:00 A.M.

08:10:00

01:05:00 P.M.

13:05:00

07:40:00 P.M.

19:40:00

01:55:00 A.M.

25:55:00

Note: Trips that span multiple dates will have stop times greater than 24:00:00. For example, if a trip begins at 10:30:00 p.m. and ends at 2:15:00 a.m. on the following day, the stop times would be 22:30:00 and 26:15:00. Entering those stop times as 22:30:00 and 02:15:00 would not produce the desired results.
	PASSING TIME

TIMETABLED ARRIVAL TIME
TransXChange /.derived from VehicleJourney/ departure time + TimingLink / Run time + StopUsage WaitTime

SIRI / Call /Timetabled​ArrivalTime

	V1
	departure_time
	Required
	HH:MM:SS local time
	The departure time from a specific stop for a specific trip on a route. The value should be expressed in HH:MM:SS local time after midnight of the day on which the trip begins. If the departure and arrival times are identical, please duplicate the values in the arrival_time and departure_time fields.

Example(s):The following columns list stop times for a trip and the proper way to express those times in the departure_time field:

Time

departure_time value

08:10:00 A.M.

08:10:00

01:05:00 P.M.

13:05:00

07:40:00 P.M.

19:40:00

01:55:00 A.M.

25:55:00

	PASSING TIME
TransXChange / ..derived from VehicleJourney/ departure time + TimingLink / Run time + StopUsage WaitTime

SIRI / Call /Timetabled​DepartureTime

	V1
	stop_id
	Required
	Binary o/1
	An ID that uniquely identifies a stop. Multiple routes may use the same stop. This value is referenced from the stops.txt file. Example(s):S81NATHIST
	TransXChange / StopPointCode

	V1
	stop_sequence
	Required
	integer
	The cardinal number that identifies the order of a stop on a particular trip. The first stop on the trip should have a stop_sequence of 1; the second stop on the trip should have a stop_sequence of 2, and so forth. Example(s):3
	SEQUENCE

TransXChange / .. Thursday

SIRI / VehicleJourney / Call / StopSequence

	V2
	Stop_headsign
	Optional
	
	the text that appears on a sign that identifies the trip's destination to passengers. Use this field when the headsign changes between stops. If this headsign is associated with an entire trip, use trip_headsign instead.

See a Google Transit Trip Planner screenshot highlighting the headsign.

	DESTINATION DISPLAY

	V1
	pickup_type
	Optional
	0 - Regularly scheduled pickup

1 - No pickup available

2 - Must phone agency to arrange pickup

3 - Must coordinate with driver to arrange pickup

	Whether passengers are picked up at a stop as part of the normal schedule or whether a pickup at the stop is not available. This field also allows the transit agency to indicate that passengers must call the agency or notify the driver to arrange a pickup at a particular stop. Valid values for this field are:

The default value for this field is 0.
	TransXChange / .. VehicleJourney/ TimingLink/ Activity

NaPTAN / Hail and Ride?

	V1
	drop_off_type
	Required
	0 - Regularly scheduled drop off

1 - No drop off available

2 - Must phone agency to arrange drop off

3 - Must coordinate with driver to arrange drop of

	Whether passengers are dropped off at a stop as part of the normal schedule or whether a drop off at the stop is not available. This field also allows the transit agency to indicate that passengers must call the agency or notify the driver to arrange a drop off at a particular stop. Valid values for this field are:

The default value for this field is 0.
	TransXChange / .. VehicleJourney/ TimingLink/ Activity

NaPTAN / Hail and Ride?

	V2
	shape_dist_traveled
	Optional
	decimal
	Positions a stop as a distance from the first shape point. The shape_dist_traveled field represents a real distance traveled along the route in units such as feet or kilometers. For example, if a bus travels a distance of 5.25 kilometers from the start of the shape to the stop, the shape_dist_traveled for the stop ID would be entered as "5.25". The values used for shape_dist_traveled must increase along with stop_sequence: they cannot be used to show reverse travel along a route.

The units used for shape_dist_traveled in the stop_times.txt file must match the units that are used for this field in the shapes.txt file.
	DISTANCE

Table 2‑6 GT Stop Times Table

2.8 calendar.txt (VALIDITY CONDITION)

2.8.1 Comments

The calendar corresponds to a Transmodel VALIDITY CONDITION – it allows service period and day types to be specified.

· Service dates are assumed to start and end at midnight.

· Public holiday exceptions are specified by the calendar dates file.

	Field Name
	Use
	Type
	Description
	Equivalent

	service_id
	Required, Unique
	nmtoken
	 An ID that uniquely identifies a set of dates when service is available for one or more routes.

Example(s): WE
	VALIDITY CONDITION

TransXChange / … OperationalProfile / RegularDayType/ DaysOfWeek

In TXC may be stated at Service, JourneyPattern or VehicleJourney level.

	monday
	Required
	Binary o/1
	Whether the service is valid for all Mondays.

Note: may list exceptions for particular dates, such as holidays, in the calendardates.txt file.
	TransXChange / Monday

	tuesday
	Required
	Binary o/1
	Whether the service is valid for all Tuesdays.
	TransXChange / .. Tuesday

	wednesday
	Required
	Binary o/1
	Whether the service is valid for all Wednesdays.
	TransXChange / .. Wednesday

	thursday
	Required
	Binary o/1
	Whether the service is valid for all Thursdays.
	TransXChange / .. Thursday

	friday
	Required
	Binary o/1
	Whether the service is valid for all Fridays.
	TransXChange / .. Friday

	saturday
	Required
	Binary o/1
	Whether the service is valid for all Saturdays.
	TransXChange / .. Saturday

	sunday
	Required
	
	Whether the service is valid for all Sundays.

	TransXChange / .. Sunday

	start_date
	Required
	YYYYMMDD
	Start date for the service.
	TransXChange / Service / OperatingPeriod / StartDate

	end_date
	Required
	YYYYMMDD
	End date for the service. This date is included in the service interval.
	TransXChange / Service / OperatingPeriod / EndDate

Table 2‑7 GT Calendar Table

2.9 calendar_dates.txt (VALIDITY CONDITION)

2.9.1 Comments

The GT calendar_dates table allows additional exception validity conditions to be stated, in particular it allows public holidays and exceptions to the regular day types to be expressed as specific calendar dates on which the service does or does not run. There are no public holiday day types, thus exceptions can be stated, but they must be explicitly repeated as dates each year. There is no text associated with the date so exceptions cannot be explained to the user e.g. as “Christmas day” or “Holiday schedule” - this has to be done in the textual service description.
	Field Name
	
	
	Details
	

	service_id
	Required
	nmtoken
	ID that uniquely identifies a set of dates when service is available for one or more routes. Example(s): WE
	VALIDITY CONDITION

TransXChange / … OperationalProfile / SpecialDaysOfOperation

In TXC may be stated at Service, JourneyPattern or VehicleJourney level

	date
	Required
	YYYYMMDD
	a particular date when service availability is different than the norm as indicated by the exception_type
	TransXChange / … OperationalProfile / SpecialDaysOfOperation … OtherPublicHoliday / Date

	exception_type
	Required
	1 - service has been added for the specified date.

2 - service has been removed for the specified date.

	Indicates whether service is available on the date specified in the date field.

For example, suppose a route has one set of trips available on holidays and another set of trips available on all other days. You could have one service_id that corresponds to the regular service schedule and another service_id that corresponds to the holiday schedule. For a particular holiday, you would use the calendar_dates file to add the holiday to the holiday service_id and to remove the holiday from the regular service_id schedule.
	VALIDITY CONDITION

TransXChange / … OperationalProfile / SpecialDaysOfOperation /DaysOfOperation

&

TransXChange / … OperationalProfile / SpecialDaysOfOperation /DaysOfNonOperation

Table 2‑8 GT Calendar Dates

2.10 fare_attributes.txt (FARE PRODUCT)

2.10.1 Comments

GT Fare attributes allows the expression of a basic fare product with simple FARE USAGE PARAMETERS and PAYMENT METHODS.

This is a very basic PRICE GROUP compared with the many Fare models considered in Transmodel and the recent UK FareXchange study.

	Field Name
	Use
	Type
	Description
	Equivalent

	fare_id
	Required, Unique
	nmtoken
	ID that uniquely identifies a fare class.

Example(s): b
	FARE PRODUCT / PRICE GROUP

	price
	Required
	Currency amount
	Required. The price field contains the fare price, in the unit specified by currency_type.

Example(s): 1.75
	FARE PRICE

	currency_type
	Required
	ISO 4217 Currency type
	 The currency used to pay the fare. ISO 4217 alphabetical currency code http://www.iso.org/iso/en/prods-services/popstds/currencycodeslist.html.

Example(s): USD
	

	payment_method
	Required
	0 - Fare is paid on board.

1 - Fare must be paid before boarding.

	When the fare must be paid. Valid values for this field are:

	CHARGING METHOD

	transfers
	Required
	0 - No transfers permitted on this fare.

1 - Passenger may transfer once.

2 - Passenger may transfer twice.

(empty) - If this field is empty, unlimited transfers are permitted.

	The number of transfers permitted on this fare.
	FARE PARAMETER | TRANSFER​ABILITY

	transfer_duration
	Optional
	seconds
	The length of time in seconds before a transfer expires.

Example(s): 4000
	TRANSFER FACTOR

Table 2‑9 GT Fare attributes Table
2.11 fare_rules.txt (DISTANCE MATRIX)

2.11.1 Comments

The fare rules allow a simple zonal TARIFF STRUCTURE to be expressed. Different fares for tariff zone to tariff zone fares can be stated – this corresponds to a DISTANCE MATRIX and PRICE TABLE of Transmodel.

This is a relatively trivial subset from the many Fare models supported in Transmodel and considered in the recent UK FareXchange study.

	
	Field Name
	Use
	Type
	Description
	Equivalent

	V1
	fare_id
	Required, Unique
	nmtoken
	ID that uniquely identifies a fare class. This value is referenced from the fare_attributes.txt file.

Example(s):b
	FARE PRODUCT

	V1
	route_id
	Optional
	nmtoken
	Route associated with the fare. Route IDs are referenced from the routes.txt file. If you have several routes with the same fare attributes, create a row in fare_rules.txt for each route.

For example, if fare class "b" is valid on route "TSW" and "TSE", the fare_rules.txt file would contain these rows for the fare class:
b,TSW
b,TSE

Example(s):TSW
	LINE

	V1
	origin_id
	Optional
	nmtoken
	Origin zone ID associated with the fare. Zone IDs are referenced from the stops.txt file. If you have several origin IDs with the same fare attributes, create a row in fare_rules.txt for each origin ID.

For example, if fare class "b" is valid for all travel originating from either zone "2" or zone "8", the fare_rules.txt file would contain these rows for the fare class:
b, , 2
b, , 8

 Example(s): 2
	TARIFF ZONE – DISTANCE MATRIX

	V1
	destination_id
	Optional
	nmtoken
	Destination zone ID associated with the fare. Zone IDs are referenced from the stops.txt file. If you have several destination IDs with the same fare attributes, create a row in fare_rules.txt for each destination ID.

For example, you could use the origin_Id and destination_Id fields together to specify that fare class "b" is valid for travel between zones 3 and 4, and for travel between zones 3 and 5, the fare_rules.txt file would contain these rows for the fare class:
b, , 3,4
b, , 3,5

Example(s): 4
	TARIFF ZONE – DISTANCE MATRIX

	V1
	contains_id
	Optional
	nmtoken
	Associates the fare ID with all routes that pass through a specified location. The contains ID field is a zone ID, referenced from the stops.txt file.

For example, if fare class "c" is associated with all travel on the GRT route that passes through zone 6, the fare_rules.txt would contain this row:

c,GRT,,,6

Example(s): 6
	TARIFF ZONE – DISTANCE MATRIX

Table 2‑10 GT Fare Rules Table

2.12 shapes.txt ()

2.12.1 Comments

The shape allows the LINK PROJECTION of a route on to a map LINK PROJECTION, equivalent to a TransXChange Route Mapping.
	
	Field Name
	Use
	Type
	Description
	Equivalent

	V2
	shape_id
	Required
	NMTOKEN
	An ID that uniquely identifies a shape.
	LINK PROJECTION

	V2
	shape_pt_lat
	Required
	lat
	Associates a shape point's latitude with a shape ID. The field value must be a valid WGS 84 latitude. Each row in shapes.txt represents a shape point in your shape definition.

For example, if the shape "A_shp" has three points in its definition, the shapes.txt file would contain these rows to define the shape:

A_shp,37.61956,122.48161,1
A_shp,37.64430,122.41070,2
A_shp,37.65863,122.30839,3

	TransXChange/ RouteSection /RouteLink/ Track// Mapping/ Location / Latitude

	V2
	shape_pt_lon
	Required
	log
	Associates a shape point's longitude with a shape ID. The field value must be a valid WGS 84 longitude. Each row in shapes.txt represents a shape point in your shape definition.

For example, if the shape "A_shp" has three points in its definition, the shapes.txt file would contain these rows to define the shape:

A_shp,37.61956,122.48161,1
A_shp,37.64430,122.41070,2
A_shp,37.65863,122.30839,3

	TransXChange/ RouteSection /RouteLink/ Track// Mapping/ Location / Longitude

	V2
	shape_pt_sequence
	Required
	integer
	Associates the latitude and longitude of a shape point with its sequence order along the shape. The first shape point in the shape definition should have a shape_pt_sequence of 1, the second shape point should have a shape_pt_sequence of 2, and so forth. You must use integer values.
	(TransXChange Implicit in order)

	V2
	shape_dist_traveled
	Optional
	distance
	When used in the shapes.txt file, the shape_dist_traveled field positions a shape point as a distance traveled along a shape from the first shape point. The shape_dist_traveled field represents a real distance traveled along the route in units such as feet or kilometers. The values used for shape_dist_traveled must increase along with shape_pt_sequence: they cannot be used to show reverse travel along a route.

The units used for shape_dist_traveled in the shapes.txt file must match the units that are used for this field in the stop_times.txt file.

For example, if a bus travels along the three points defined above for A_shp, the additional shape_dist_traveled values (shown here in kilometers) would look like this:

A_shp,37.61956,122.48161,1,0
A_shp,37.64430,122.41070,2,6.8310
A_shp,37.65863,122.30839,3,15.8765

	DISTANCE

TransXChange/ RouteSection /RouteLink/ Track/ Distance

2.13 frequency.txt ()

2.13.1 Comments

Used to handle frequency based services. Allows a frequency to be specified. This is similar to the TransXChange Frequency Element, used todescribe a service that occurs at a specified interval within a time window rather than running to an exact timetable.

	
	Field Name
	Use
	Type
	Description
	Equivalent

	V2
	trip_id
	Required
	NMTOKEN
	An ID that identifies a trip on which the specified frequency of service applies. Trip IDs are referenced from the trips.txt file.
	TransXChange / ​VehicleJourney/ Vehicle​JourneyCode /

	V2
	start_time
	Required
	time
	The time at which service begins with the specified frequency. For times occurring after midnight, enter the time as a value greater than 24:00:00 in HH:MM:SS local time for the day on which the trip schedule begins. E.g. 25:35:00.
	TransXChange / ​VehicleJourney/ DepartureTime/

	V2
	end_time
	Required
	time
	The time at which service changes to a different frequency (or ceases). For times occurring after midnight, enter the time as a value greater than 24:00:00 in HH:MM:SS local time for the day on which the trip schedule begins. E.g. 25:35:00.
	TransXChange / ​VehicleJourney/ Frequency/ EndTime/

	V2
	headway_secs
	Required
	secs
	The time between departures from the same stop (headway) for this trip type, during the time interval specified by start_time and end_time. The headway value must be entered in seconds.
	TransXChange / ​VehicleJourney/ Frequency/ Interval / Scheduled​Frequency/

