

EUROPEAN STANDARD

NORME EUROPÉENNE

EUROPÄISCHE NORM

 FINAL DRAFT
 FprEN 15531-2

 March 2015

ICS 35.240.60 Will supersede CEN/TS 15531-2:2007

English Version

 Public transport - Service interface for real-time information
relating to public transport operations - Part 2: Communications

Transport public - Interface de service pour les informations
en temps réel relatives aux opérations de transport public -

Partie 2 : Infrastructure des communications

 Öffentlicher Verkehr - Serviceschnittstelle für
Echtzeitinformationen bezogen auf Operationen im

öffentlichen Verkehr - Teil 2: Kommunikationsstruktur

This draft European Standard is submitted to CEN members for formal vote. It has been drawn up by the Technical Committee CEN/TC
278.

If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations which
stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other language
made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United
Kingdom.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to
provide supporting documentation.

Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without notice and
shall not be referred to as a European Standard.

EUROPEAN COMMITTEE FOR STANDARDIZATION
C O M I T É E U R OP É E N D E N O R M A LI S A T I O N
EUR O P Ä IS C HES KOM I TE E F ÜR NOR M UNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2015 CEN All rights of exploitation in any form and by any means reserved
worldwide for CEN national Members.

Ref. No. FprEN 15531-2:2015 E

FprEN 15531-2:2015 (E)

2

Contents Page

Foreword ..6

Introduction ...7

1 Scope ..8

2 Normative references ..9

3 Terms and definitions ...9

4 Symbols and abbreviations ..9

5 Common communication aspects ...9
5.1 Data Exchange Patterns of Interaction ..9
5.1.1 Introduction ..9
5.1.2 Request/Response Pattern ...9
5.1.3 Publish/Subscribe Pattern ... 10
5.1.4 Publish/Subscribe with Broker Pattern .. 11
5.1.5 Request/Response – Compound Requests ... 12
5.1.6 Publish/Subscribe – Compound Subscriptions .. 13
5.2 Delivery Patterns... 13
5.2.1 Introduction ... 13
5.2.2 Direct Delivery ... 13
5.2.3 Fetched Delivery ... 14
5.2.4 Data Horizon for Fetched Delivery .. 15
5.2.5 Get Current Message .. 16
5.2.6 Multipart Despatch of a Delivery ... 16
5.2.7 Multipart Despatch of a Fetched Delivery – MoreData.. 17
5.3 Mediation Behaviour .. 18
5.3.1 Introduction ... 18
5.3.2 Mediation Behaviour – Maintaining Subscription Last Updated State ... 18
5.3.3 Mediation Behaviour – Subscription Filters .. 20
5.4 Recovery Considerations for Publish Subscribe .. 22
5.4.1 Introduction ... 22
5.4.2 Check Status – Polling ... 23
5.4.3 Heartbeat – Pinging .. 23
5.4.4 Degrees of Failure... 23
5.4.5 Detecting a Failure of the Producer .. 24
5.4.6 Detecting a Failure of the Consumer .. 25
5.5 Recovery Considerations for Direct Delivery .. 26
5.6 Request Parameters and Interactions .. 26
5.7 Error Conditions for Requests .. 29
5.8 Versioning ... 31
5.8.1 Introduction ... 31
5.8.2 The Overall SIRI Framework Version Level ... 31
5.8.3 The SIRI Functional Service Type Version Level .. 31
5.9 Access Controls: Security and Authentication ... 31
5.9.1 Introduction ... 31
5.9.2 System Mechanisms External to SIRI Messages .. 31
5.10 Service Discovery ... 32
5.10.1 Introduction ... 32
5.10.2 Discovery of Servers that Support SIRI Services .. 32
5.10.3 Discovery of the Capabilities of a SIRI Server ... 33

FprEN 15531-2:2015 (E)

3

5.10.4 Discovery of the Coverage of a Given SIRI Functional Service ... 33
5.11 Capability Matrix .. 34
5.11.1 Introduction .. 34
5.11.2 SIRI General Capabilities .. 34

6 Request/Response .. 35
6.1 Making a Direct Request ... 35
6.1.1 Introduction .. 35
6.1.2 ServiceRequest Message — Element .. 36
6.1.3 The ServiceRequestContext — Element ... 37
6.1.4 Common Properties of ServiceRequest Messages — Element.. 39
6.1.5 ServiceRequest — Example ... 40
6.1.6 Access Controls on a Request .. 40
6.2 Receiving a Data Delivery ... 41
6.2.1 Introduction .. 41
6.2.2 ServiceDelivery .. 42

7 Subscriptions ... 46
7.1 Setting up Subscriptions .. 46
7.1.1 Introduction .. 46
7.1.2 SubscriptionRequest .. 48
7.1.3 SubscriptionResponse ... 50
7.2 Subscription Validity ... 53
7.3 Terminating Subscriptions ... 53
7.3.1 Introduction .. 53
7.3.2 The TerminateSubscriptionRequest .. 53
7.3.3 The TerminateSubscriptionResponse ... 54
7.3.4 The SubscriptionTerminatedNotification (SIRI 2.0) ... 56

8 Delivering data ... 57
8.1 Direct Delivery ... 57
8.1.1 Introduction .. 57
8.1.2 Acknowledging Receipt of Data (DataReceivedAcknowledgement) ... 57
8.2 Fetched Delivery .. 58
8.2.1 Introduction .. 58
8.2.2 Signalling Data Availability (DataReadyNotification / DataReadyResponse) 59
8.2.3 Polling Data (DataSupplyRequest/ServiceDelivery) .. 60
8.3 Delegated Delivery +SIRI 2.0 .. 62

9 Recovery from system failure .. 62
9.1 Introduction .. 62
9.2 Recovery after Client Failure .. 62
9.3 Recovery after Server Failure .. 63
9.4 Reset after Interruption of Communication .. 63
9.5 Alive Handling .. 64
9.5.1 Introduction .. 64
9.5.2 CheckStatusRequest ... 64
9.5.3 CheckStatusResponse .. 65
9.5.4 HeartbeatNotification .. 66
9.6 Additional Failure modes for delegated delivery (+SIRI v2.0) .. 67

10 Transport of SIRI messages ... 68
10.1 Separation of Addressing from Transport Protocol .. 68
10.2 Logical Endpoint Addresses .. 68
10.2.1 Endpoint Addresses .. 68
10.2.2 Endpoint Address — Examples ... 69
10.3 Parallelism and Endpoint Addresses .. 70
10.4 Encoding of XML messages ... 70
10.4.1 Principles.. 70

FprEN 15531-2:2015 (E)

4

10.4.2 Encoding of Errors in XML .. 71
10.4.3 Character Set ... 71
10.4.4 Schema Packages... 71
10.4.5 Siri.XSD – Use of XML Choice ... 72
10.4.6 SiriSG.XSD – Use of XML Substitution groups ... 74
10.5 Use of SIRI with SOAP / WSDL .. 76
10.5.1 Introduction ... 76
10.5.2 Web Services ... 76
10.5.3 Use of SOAP .. 78
10.5.4 SIRI WSDL ... 78
10.5.5 SIRI WSDL structure ... 79
10.5.6 SIRI RPC WSDL ... 81
10.5.7 SIRI Document WSDL (+SIRI v2.0) .. 86
10.5.8 SIRI WSDL 2.0 (+SIRI v2.0) ... 86
10.5.9 SIRI WSDL Status ... 86

11 Capability Discovery Requests ... 86
11.1 General ... 86
11.2 Capability Request.. 86
11.3 Service Capability Discovery ... 88
11.3.1 Service Capability Discovery Request — Element .. 88
11.3.2 Service Capability Discovery Response — Element ... 88
11.3.3 Functional Service Capability Discovery Response — Element ... 89
11.3.4 Service Capability Response — Example .. 91
11.4 Functional Service Capability Permission Matrix ... 92
11.4.1 Introduction ... 92
11.4.2 OperatorPermissions — Element .. 93
11.4.3 LinePermissions — Element ... 94
11.4.4 ConnectionLinkPermissions — Element ... 94
11.4.5 StopMonitorPermissions — Element.. 94
11.4.6 VehicleMonitorPermissions — Element ... 95
11.4.7 InfoChannelPermissions — Element .. 95

12 SIRI for Simple Web Services – SIRI Lite (+SIRI v2.0) ... 96
12.1 Introduction ... 96
12.1.1 General ... 96
12.1.2 Existing Implementations .. 97
12.1.3 Using SIRI-LITE services in combination ... 97
12.1.4 Alternative Response Encoding .. 98
12.1.5 Lossless transforms ... 98
12.1.6 Simple transforms .. 98
12.2 Encoding of URL Requests ... 98
12.2.1 Complete Request Encoding in HTTP URL’s ... 98
12.2.2 General format of SIRI Lite request URL .. 99
12.2.3 Endpoints and Service Identification ... 99
12.2.4 Encoding of Service Parameters on http request ... 99
12.2.5 Naming of Request Parameters with Hierarchy .. 100
12.2.6 Naming of Parameters with Plural Cardinality ... 100
12.2.7 Handling of invalid request combinations ... 100
12.2.8 Specifying the encoding of the Response ... 100
12.3 Examples ... 100
12.3.1 General ... 100
12.3.2 SIRI-SM Simple Stop Monitoring request to fetch stop departures – SIRI LITE Examples 101
12.3.3 SIRI-VM Simple Vehicle Monitoring request to fetch vehicle positions – SIRI Lite

Examples ... 104
12.3.4 SIRI-VM Complex Vehicle Monitoring to obtain journeys – SIRI Lite Examples 107
12.3.5 SIRI-SM Stop Monitoring failed request with Exception – SIRI LITE Examples 113
12.4 Mapping of SIRI XML to Alternative encodings ... 114

FprEN 15531-2:2015 (E)

5

12.4.1 Use of syntactic features of alternative rendering formats .. 114
12.4.2 Mapping of SIRI data types to alternative encodings .. 114
12.5 Recommendations for the use of SIRI Simple Web Services ... 115
12.5.1 General ... 115
12.5.2 Services useful for device Passenger Information Services .. 115
12.5.3 Response filtering ... 115
12.5.4 Incorporation of reference data in responses .. 115
12.5.5 Multiple functional service deliveries in the same response .. 115
12.5.6 Support a choice of response encodings ... 116
12.5.7 Provide reporting identifiers .. 116

13 Common SIRI elements & Data Types .. 116
13.1 General ... 116
13.2 Introduction .. 117
13.3 Base Data Types .. 117
13.3.1 W3C Simple Types .. 117
13.3.2 SIRI Simple Types ... 118
13.3.3 NationalLanguageStringStructure — Element ... 118
13.4 Shared Elements & Structures ... 118
13.4.1 FramedVehicleJourneyRef — Element ... 118
13.4.2 Location — Element .. 119
13.4.3 Error — Element .. 119
13.5 Shared groups of elements .. 120
13.5.1 ServiceInfoGroup — Group .. 120
13.5.2 JourneyInfoGroup — Group ... 121
13.5.3 VehicleJourneyInfoGroup — Group .. 121
13.5.4 JourneyPatternInfoGroup — Group .. 123
13.5.5 DisruptionGroup — Group ... 124
13.5.6 JourneyProgressGroup — Group .. 126
13.6 OperationalBlockGroup — Group ... 130
13.7 OperationalInfoGroup — Group ... 130

Bibliography .. 131

FprEN 15531-2:2015 (E)

6

Foreword

This document (FprEN 15531-2:2015) has been prepared by Technical Committee CEN/TC 278 “Intelligent
transport systems”, the secretariat of which is held by NEN.

This document is currently submitted to the Formal Vote.

This document will supersede CEN/TS 15531-2:2007.

This document presents Part 2 of the European Standard known as “SIRI”. SIRI provides a framework for
specifying communications and data exchange protocols for organizations wishing to exchange Real-time
Information (RTI) relating to public transport operations.

The SIRI European Standard is presented in three parts:

— context and framework, including background, scope and role, normative references, terms and
definitions, symbols and abbreviations, business context and use cases (Part 1);

— the mechanisms to be adopted for data exchange communications links (Part 2);

— data structures for a series of individual application interface modules PT, ET, ST, SM, VM, CT, CM, GM
(Part 3).

Two additional parts define additional functional services as CEN Technical Specifications:

— additional data structures for additional application interface module FM (Part 4);

— additional data structures for additional application interface module SX (Part 5).

The XML schema can be downloaded from http://www.siri.org.uk/, along with available guidance on its use,
example XML files, and case studies of national and local deployments.

It is recognised that SIRI is not complete as it stands, and from time to time may need to continue to be
enhanced to add additional capabilities. It is therefore intended that a SIRI Management Group should
continue to exist, at European level, based on the composition of SG7.

http://www.siri.org.uk/

FprEN 15531-2:2015 (E)

7

Introduction

Public transport services rely increasingly on information systems to ensure reliable, efficient operation and
widely accessible, accurate passenger information. These systems are used for a range of specific purposes:
setting schedules and timetables; managing vehicle fleets; issuing tickets and receipts; providing real-time
information on service running, and so on.

This European Standard specifies a Service Interface for Real-time Information (SIRI) about Public Transport.
It is intended to be used to exchange information between servers containing real-time public transport vehicle
or journey time data, as well as between server and end-user devices like smartphones or web browsers.
These include the control centres of transport operators and information systems that utilise real-time vehicle
information, for example, to deliver services such as travel information.

Well-defined, open interfaces have a crucial role in improving the economic and technical viability of Public
Transport Information Systems of all kinds. Using standardised interfaces, systems can be implemented as
discrete pluggable modules that can be chosen from a wide variety of suppliers in a competitive market, rather
than as monolithic proprietary systems from a single supplier. Interfaces also allow the systematic automated
testing of each functional module, vital for managing the complexity of increasing large and dynamic systems.
Furthermore, individual functional modules can be replaced or evolved, without unexpected breakages of
obscurely dependent function.

This European Standard will improve a number of features of public transport information and service
management:

— Interoperability – the European Standard will facilitate interoperability between information processing
systems of the transport operators by: (i) introducing common architectures for message exchange; (ii)
introducing a modular set of compatible information services for real-time vehicle information; (ii) using
common data models and schemas for the messages exchanged for each service; and (iv) introducing a
consistent approach to data management.

— Improved operations management – the European Standard will assist in better vehicle management by
(i) allowing the precise tracking of both local and roaming vehicles; (ii) providing data that can be used to
improve performance, such as the measurement of schedule adherence; and (iii) allowing the distribution
of schedule updates and other messages in real-time.

— Delivery of real-time information to end-users – the European Standard will assist the economic provision
of improved data by; (i) enabling the gathering and exchange of real-time data between VAMS systems;
(ii) providing standardised, well defined interfaces that can be used to deliver data to a wide variety of
distribution channels.

Technical advantages include the following:

— Reusing a common communication layer for all the various technical services enables cost-effective
implementations, and makes the European Standard readily extensible in future.

FprEN 15531-2:2015 (E)

8

1 Scope

SIRI uses a consistent set of general communication protocols to exchange information between client and
server. The same pattern of message exchange may be used to implement different specific functional
interfaces as sets of concrete message content types.

Two well-known specific patterns of client server interaction are used for data exchange in SIRI:
Request/Response and Publish/Subscribe.

— Request/Response allows for the ad hoc exchange of data on demand from the client.

— Publish/Subscribe allows for the repeated asynchronous push of notifications and data to distribute
events and Situations detected by a Real-time Service.

The use of the Publish/Subscribe pattern of interaction follows that described in the Publish-Subscribe
Notification for Web Services (WS-PubSub) specification, and as far as possible, SIRI uses the same
separation of concerns and common terminology for publish/subscribe concepts and interfaces as used in
WS-PubSub. WS-PubSub breaks down the server part of the Publish/Subscribe pattern into a number of
separate named roles and interfaces (for example, Subscriber, Publisher, Notification Producer, and
Notification Consumer): in an actual SIRI implementation, certain of these distinct interfaces may be combined
and provided by a single entity. Although SIRI is not currently implemented as a full WS-PubSub web service,
the use of a WS-PubSub architecture makes this straightforward to do in future.

Publish/Subscribe will not normally be used to support large numbers of end user devices.

For the delivery of data in responses (to both requests and subscriptions), SIRI supports two common
patterns of message exchange, as realised in existent national systems:

— A one step ‘Direct Delivery’, as per the classic client-server paradigm, and normal WS-PubSub publish
subscribe usage; and;

— A two-step ‘Fetched Delivery’ which elaborates the delivery of messages into a sequence of successive
messages pairs to first notify the client, and then to send the data when the client is ready. Fetched
Delivery is a stateful pattern in its own right.

Each delivery pattern allows different trade-offs for implementation efficiency to be made as appropriate for
different target environments.

A SIRI implementation may support either or both delivery methods; in order to make the most efficient use of
the available computational and communication resources. The delivery method may either be preconfigured
and static for a given implementation, or each request or subscription may indicate the delivery method
required by the client dynamically as part of the request policy, and the server may refuse a request if it does
not support that method, giving an appropriate error code.

The Interaction patterns and the Delivery patterns are independent aspects of the SIRI protocol and may be
used in any combination in different implementations.

For a given SIRI Functional Service type (Connection Monitoring, Stop Monitoring etc.), the message payload
content is the same regardless of whether information is exchanged with a Request/Response or
Publish/Subscribe pattern, or whether it is returned by Direct or Fetched Delivery.

The SIRI Publish/Subscribe Protocol prescribes particular mediation behaviour for reducing the number of
notifications and the amount of network traffic arising from subscriptions.

The mediation groups the various subscriptions from a subscriber into one or more Subscriber Channels, and
is able to manage notifications and updates for the aggregate.

FprEN 15531-2:2015 (E)

9

Only partial updates to the data set since the last delivery for the subscription need to be sent.

The SIRI Communication protocols are designed to fail gracefully. Considerations for resilience and recovery
are covered below.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

FprEN 15531-1, Public transport - Service interface for real-time information relating to public transport
operations - Part 1: Context and framework

3 Terms and definitions

For the purposes of this document, the terms and definitions given in FprEN 15531-1 apply.

4 Symbols and abbreviations

For the purposes of this document, the symbols and abbreviations given in FprEN 15531-1 apply.

5 Common communication aspects

5.1 Data Exchange Patterns of Interaction

5.1.1 Introduction

There are two main patterns of interaction for Data Exchange in SIRI: Request/Response and
Publish/Subscribe. The patterns are complementary, that is an implementation may support both, and
implementers may choose the most efficient pattern according to the nature of their application.

NOTE Publish/Subscribe can emulate a Request/Response interaction by use of a short subscription. A partial SIRI
implementation that supports only Request/Response is useful for connecting many types of Public Transport Information
System applications to AVMS and other Producer System data.

5.1.2 Request/Response Pattern

The Request/Response interaction allows for the immediate fulfilment of one-off data supply requests made
by a Requestor to a Service. Pairs of Request/Response patterns are also used for the interactions that make
up other patterns, such as Publish/Subscribe.

In the Request/Response interaction used to get data, the Client sends a request message to a Server that
offers the required SIRI Functional Service, and immediately receives a Delivery message in response
(Figure 1). A Data Delivery may be made as a one-step Direct Delivery, or as a two-step Fetched Delivery
(see later).

The Requestor shall give a unique reference to each request, which will be returned in the matching response.

FprEN 15531-2:2015 (E)

10

The Requestor expresses its specific interests through Topic and Delivery Policy parameters on the specific
SIRI Functional Service Requests. If the request cannot be satisfied an error condition is returned diagnosing
the reason.

Figure 1 — Request / Response Interaction

Request/response allows for an efficient transmission of data on-demand from the Consumer, and is
extremely easy to implement using commodity internet software components.

5.1.3 Publish/Subscribe Pattern

The Publish/Subscribe interaction (see Figure 2) allows for the asynchronous detection of real-time events by
a producer service, whose role is to generate and send notifications to one or more interested consumers.

In the Publish/Subscribe interaction, the Subscriber client sends a request message to the Notification
Producer of a SIRI Functional Service to create a Subscription, which may or may not be granted. The
Subscriber expresses its specific interests through Topic and Subscription Policy parameters, and receives an
acknowledgement that this has been created, or an error condition.

Once a Subscription exists, the service, acting as the Notification Producer, uses it to determine when to send
a notification to a consumer after a Situation, i.e. event is detected. The incoming event notification to be
published is matched against the interests expressed by the Topic and other filter parameters of the
Subscription and if satisfied, a notification message is sent to the Consumer. The actual Notification Message
Delivery may be made either as a one-step Direct Delivery to a Notification Consumer, or as a two-step SIRI
Fetched Delivery, with separate message pairs first to notify and then to deliver the payload.

In SIRI, the Subscriber and Consumer roles are normally implemented by the same client service, although
they are logically separate. Every Consumer shall know its Subscriber so that they can interact to handle
recovery from service failures.

Subscriptions for different types of SIRI Functional Service are managed separately.

A Subscriber may add different Subscriptions at different times.

A Subscription Request includes an Initial Termination Time indicating the desired duration i.e. lease of the
individual Subscription. The subscription will only be granted if this can be met, otherwise an error will be
returned.

Subscriptions have a life span as specified by the Subscriber, and will be terminated by the Notification
Producer service when they reach their expiry time.

Subscribers may terminate their own existing Subscriptions before their predefined expiry time through a
Subscription Manager. The Subscription Manager is subordinate to the Notification Producer, and in SIRI
implementations, is normally provided by the same entity, although logically distinct. Each Subscription
Manager knows its associated Notification Producer, and vice versa. Although the Notification Producer is the

FprEN 15531-2:2015 (E)

11

factory for creating new subscriptions, it does not manage them once created; rather this is done by the
Subscription Manager. This design (i.e. the Notification Producer finds the Subscription Manager for the
Subscriber, rather than the Subscription Manager finds the Notification Producer for the Subscriber) is
required to conform to the WS-PubSub architecture. The WS-PubSub architecture allows for additional
Subscription management functions to be added through the Subscription Manager for example renewal,
pause/resume, or the dynamic tuning of subscription policies, but SIRI does not specify any of these at
present. SIRI does however support a Terminate Subscription and a Terminate All Subscriptions function.

Figure 2 — Simple Publish/Subscribe Interaction

Subscriptions are a stateful resource: they need a unique identifier that can be used by Subscriber, Producer
and Consumer to refer to the same subscription on different occasions. They will each hold their own
representation of the subscription. In SIRI this identifier is issued by the Subscriber.

Publish/Subscribe allows for an efficient regular event driven exchange of updates to data. It requires a more
elaborate implementation, with the holding of state by both participants and the dedication of computing
resources to run the notification production.

5.1.4 Publish/Subscribe with Broker Pattern

The WS-PubSub architecture also allows for the logical separation of the concerns of Publishing and
Notification Production, and in its fully articulated form, has a separate Publisher role that is a subordinate
constituent of the Notification Producer service (see Figure 3). The Publisher produces notifications of any
significant situations, i.e. events. For a real-time service, the Publisher monitors the real-time data and if a
change has occurred, it produces a notification. The Notification Producer then matches the Notification with
the interests and policies expressed by Subscribers and despatches the notification delivery to the Notification
Consumer indicated by the Subscription.

It is possible to have more than one Notification Producer sitting between the Publisher and the Consumer,
either to carry out successive types of filtering and processing of the notifications, or for scalability. WS-
PubSub distinguishes between direct notification – where the notification message from the Publisher is
delivered unchanged, and brokered notification – where the Notification Producer filters and also possibly

FprEN 15531-2:2015 (E)

12

transforms the message. Both brokered (e.g. for SIRI Stop Monitoring) and unbrokered (e.g. for SIRI General
Message) mediation occurs in different SIRI Functional Services.

The separation of concerns between Publisher and Notification producer is transparent to the Subscriber and
Consumer, and so in SIRI is merely an implementation choice – which does not currently explicitly mandate
any requirements for the interface between the Notification Producer and Publisher. Every Publisher knows its
associated Notification Producer(s), and vice versa.

Figure 3 — Brokered Publish/Subscribe Interaction

Further Subscription and Subscriber filtering tasks, in particular the enforcement of SIRI Access controls, are
implemented by the Notification Producer, not the Publisher.

5.1.5 Request/Response – Compound Requests

Multiple requests for a single SIRI Functional Service may be included in a single Data Request/Response
interaction: each request may cover different topics and policies (Figure 4).

Figure 4 — Request/Response: Compound Requests

FprEN 15531-2:2015 (E)

13

5.1.6 Publish/Subscribe – Compound Subscriptions

Multiple subscriptions to a single SIRI Functional Service may be included by a Subscriber in a single
Subscription request: each subscription may cover different topics and policies (Figure 5). The handling of
notifications and deliveries for compound subscriptions is discussed in the clause on Mediation later below.

Figure 5 — Publish/Subscribe: Compound Subscriptions

5.2 Delivery Patterns

5.2.1 Introduction

Services return notifications and Situation content to the Consumer using Delivery messages. In real-time
applications, it is important to be able to optimise systems to ensure rapid delivery, and SIRI supports two
different message pattern variations for making a delivery, that in principle can be used interchangeably: these
are; (i) Direct Delivery, and; (ii) Fetched Delivery.

The choice of delivery patterns may be pre-configured, or if the implementation supports both methods, be
specified as a parameter on the request. For systems that support dynamic choice, if the SIRI implementation
does not support the requested delivery method for a specific service type, an error message will be returned.

5.2.2 Direct Delivery

In Direct Delivery, the payload is sent as the content of a single message to the Consumer Client (Figure 6).
For a Request/Response this will be the requestor. For a subscription this will be the Notification Consumer as
indicated on the Subscription (i.e. the notification and the delivery are the same message.).

Figure 6 — One Step Direct Delivery

FprEN 15531-2:2015 (E)

14

In Direct Delivery, the burden of holding and queuing messages is distributed to the client, with some
advantages for scaling, as the central server needs neither retain data, nor allocate computation resource to
service the additional data supply steps. The interaction is simpler, with fewer messages being exchanged,
and a simpler mediation. However the method does not allow the Consumer to optimise its own activities by
separating its processing to detect the existence of an update from its processing to use the payload data.
The full payload is always sent, even if it is not currently of interest to the client. Direct Delivery is appropriate
for deployment with fast, reliable communications, and with adequate processing capability on the Consumer.
It is especially efficient when most updates are relevant to the client and are used immediately.

5.2.3 Fetched Delivery

In Fetched Delivery, the delivery is done in a two successive steps, separating the notification of an update
from the delivery of the data payload (Figure 7). The steps are as follows:

1) The Producer sends a Data Ready Notification message to the Consumer.

2) The Consumer Acknowledges receipt with a Data Ready Response.

3) The Consumer sends a Data Supply Request to the Notification Producer.

4) The Notification Producer responds with a Data Supply Delivery.

The second read is allowed to be destructive, that is, the ability to recreate exactly the same delivery to that
point is not guaranteed: the differential update may be deleted once it has been given to the Consumer.

Figure 7 — Fetched Delivery

Fetched Delivery is a stateful pattern of interaction in its own right – requiring the ability of both parties to refer
to the data update by a reference that persists for its currency. In this case the reference is issued by the
Producer. Whether the identifier needs to be exposed to the Consumer depends on the mediation model (see
later): if all updates are aggregated through a single subscriber channel, then there is only one data set to
fetch, and an explicit reference is not needed

Fetched Delivery allows the Consumer to defer the sending of the full payload until it is ready to process it: if
in the meantime the Situation has changed further, and a new notification message has arisen, only the latest
update need be exchanged. This can give a more efficient use of bandwidth for applications that are
bandwidth constrained. In addition, notifications are small messages that can typically be examined using less
computational resource than a full delivery message containing a payload, so if the majority of updates are
discarded (i.e. never fetched); the processing load on the Consumer may be less. Similarly, the storage
requirement on the Consumer to queue small notification messages for Fetched Delivery is less than the
storage requirement to queue larger payload messages for Direct Delivery (but larger on the Notification
Producer to retain it until fetched). As a trade-off, there is additional computational and communication

FprEN 15531-2:2015 (E)

15

overhead required to conduct the extra interactions of fetched data supply messages, and also an additional
latency to carry it out (in particular a fourfold communication overhead).

In practice, Fetched Delivery is used predominantly for Publish/Subscribe. Figure 8 shows the full sequence of
interaction from subscription to delivery.

Figure 8 — Fetched Delivery for Publish/Subscribe

For completeness, we note that Fetched Delivery can also be used for the delivery of responses in a
Request/Response interaction (Figure 9).

5.2.4 Data Horizon for Fetched Delivery

For Fetched Delivery, implementations may vary as to how long the data notified as ready will still be available
to be fetched. At a minimum the most recent update shall be available until it is stale, i.e. has reached the end
of its currency time, or is superseded by another update. Some implementations may choose to keep previous
updates available within a longer data horizon, for example the current day, and support historic access to a
log of previous updates.

For further considerations as to the contents of fetched delivery, see discussion of Mediation Behaviour below.

FprEN 15531-2:2015 (E)

16

Figure 9 — Fetched Delivery for Request/Response

5.2.5 Get Current Message

The SIRI Data Supply Request may be used by itself without a previous notification to get the current data.
This corresponds to the WS-PubSub capability of ‘Get Current Message’, which allows a Consumer to get the
current messages published for a given subscription. In normal WS-PubSub usage this is a non-destructive
read: the current data can be reread many times, provided the data is still relevant.

The SIRI Data Supply Request has a parameter which can be used to optimise usage: ‘return latest’ i.e.
whether to return only the most recent update for the subscription. (Return latest is in fact the default; the
opposite, ‘return all’ has to be explicitly specified on a request.) ‘Return latest’ cannot be repeated to obtain
the same data, since once delivered, a new latest time will be held for the subscription.

In SIRI one of the mediations carried out by the Notification Producer (see later below) is to aggregate the
individual subscriptions of a particular subscriber into a Subscription Channel. In effect, for each subscriber for
each service, the Notification Producer keeps a Subscription channel or Filter: all subscriptions from the
Subscriber are normally assigned to the Subscription Filter. This means that a SIRI Get Current Message
request may need to indicate whether to return; (i) the latest data for a specific Subscription (the normal WS-
PubSub interpretation); (ii) the latest data for a particular Subscriber Filter (i.e. group of subscriptions
belonging to a single subscriber); or (iii) the latest data for a particular Subscriber (i.e. group of all the
Subscriber Filters belonging to a particular Subscriber).

Support of ‘return latest’ is a required SIRI Feature. Support for Get Current Message with ‘return all’ is a
required feature of WS-PubSub: a SIRI implementation will need to support it in order to be able to return a full
data set to new subscribers who have just joined.

5.2.6 Multipart Despatch of a Delivery

If the amount of data to be delivered is large, some implementations allow the Producer to break the data
supply step up into multiple messages, which the Consumer can then assemble into a single update
(Figure 10). This has further implications for any recovery processes and is discussed in more detail later.

FprEN 15531-2:2015 (E)

17

Figure 10 — Multipart Delivery

5.2.7 Multipart Despatch of a Fetched Delivery – MoreData

The data for a single subscription shall be completely included within a single Delivery. Data for a Fetched
Delivery may only be split into separate messages if it is for different subscriptions for the same subscriber.

For multipart despatch, on the Service Delivery message the MoreData element indicates whether the content
of a DataSupplyResponse contains all the updated data, or whether for implementation reasons, the
transmission has been split into several sub-messages, requiring retrieval by the consumer with a series of
chained data DataSupplyRequests; see Figure 11. Each Data Supply Delivery response message in the
chain indicates that there is further data by means of a MoreData value of “true”; in the last data supply
response message, the MoreData element is set to “false”.

Figure 11 — Fetched Multipart Delivery

FprEN 15531-2:2015 (E)

18

With the transmission of the final ServiceDelivery message, the Producer service considers the delivery of
the data to be complete (i.e. it is permitted to reset the last update flags of the subscription as now being
current with known notifications). A renewed DataSupplyRequest would then not be answered with the data
of the recently polled subscription.

If the Optional SIRI Capability ConfirmDelivery is used, then after receiving the final Data Supply Delivery, the
Consumer shall send a DataAcknowledgement message to the Producer to indicate that it has successfully
received the data, which permits the Producer to close the delivery.

5.3 Mediation Behaviour

5.3.1 Introduction

In order to reduce the amount of network traffic and the volume of notification and delivery messages that
consumers shall deal with, SIRI prescribes particular mediation behaviour on the part of the Notification
Producer/Publisher. There are several different aspects to this particular mediation to which a SIRI
implementation shall conform; in particular; (i) Maintaining Subscription Last Updated State, and; (ii)
Aggregating Subscriptions into a Subscriber Channel. Both of these are quite simple concepts, but when
combined, especially with fetched delivery, lead to some complexity.

5.3.2 Mediation Behaviour – Maintaining Subscription Last Updated State

In the simplest incarnation of the WS-PubSub paradigm, notification messages are despatched to all
interested subscribers immediately when they occur. When a Consumer joins a service it may be sent an
initial delivery with the set of current data. Thereafter, it is sent only additional notifications and deliveries for
new events. The full set of current data for a given topic expression may be retrieved by a Consumer at any
subsequent time using the ‘Get Current Message’ function. In SIRI this basic mediation is further elaborated
by (i) the requirement to support the Fetched Delivery pattern, and (ii) an ability to set a threshold value for
sensitivity to change in data values for subscriptions in certain SIRI Functional Service types (notably Stop
Monitoring, Vehicle Monitoring and Connection Monitoring).

With the SIRI Fetched Delivery pattern, payload data is not sent immediately along with the notification. This
means that the Notification Producer shall retain state for each subscription to hold the time that the most
recent successful delivery was made to the individual Consumer, so that when the Consumer comes to fetch
the data with a data supply message, only the updates ‘recent’ to that individual Consumer are sent (i.e. those
since the last fetch), and not the whole current data set.

The ability to establish the point of last update for each individual subscription is also required to support the
filtering of notification messages by a change threshold regardless of whether Direct or Fetched Delivery is
used. If a change threshold is set, then a notification for a data event representing a change to an earlier
event will only be sent if the change in some quantitative value (for example, the predicted arrival time)
exceeds the specified threshold of difference to that in the last delivery.

The use of Last Update mediation for a Direct Delivery is shown in Figure 12 as a simple message sequence
example. (See Figure 13 for a Fetched Delivery sequence.) On subscription, the Producer computes the
current data based on notifications from the Publisher (for example 1.1, 1.2) according to the subscription
topic and sends it to the Consumer; the time (T1) of supply is recorded against the individual subscription.
Subsequent notifications from the Publisher (2.1, 2.2, 2.3) are filtered until the sensitivity threshold is
exceeded, at which point all the updates since the last update time T1 (2.1, 2.2, 2.3) are aggregated and sent
and the new time of supply recorded (T2).

FprEN 15531-2:2015 (E)

19

Figure 12 — Mediation: Update Tracking and sensitivity threshold for Direct Delivery

In a Fetched Delivery interaction, there may be a delay between the despatch of a Notification that a new
update exists to the Consumer and the despatch of the Data Delivery message – which occurs only in
response to an explicit Data Supply request from the Consumer. In the meantime, further situations may occur
in the interim, giving rise to further notifications from the Publisher to the Notification Producer (but not to the
Consumer – the Notification Producer also retains state that a notification has already been issued). The data
delivery, when finally made, shall represent the most current position: the data supply message shall include
all known subsequent data events that have taken place since the time of last data supply.

This is shown in Figure 13 for a Fetched Delivery sequence. On subscription, the Producer checks if there is
any current data (1.1, 1.2) according to the subscription topic and if so, sends a data ready notification (#1) to
the Consumer. When the Consumer requests the data supply, the Producer recomputes the current data (1.1,
1.2) and sends it to the Consumer. The time (T1) of supply is recorded against the individual subscription.
Subsequent notifications from the Publisher (2.1, 2.2) are filtered until the sensitivity threshold is exceeded, at
which point (T2) a new notification (#2) is sent to the Consumer. When the Consumer requests the data
supply at a later time (T3), the Producer recomputes the data since the last update which, as well as the
notifications that triggered the Data Ready Notification (2.1, 2.2), in the example also includes an additional

FprEN 15531-2:2015 (E)

20

item (2.3) which has arrived in the meantime. The data is despatched to the Consumer and the new time (T3)
of supply is recorded against the individual subscription.

Figure 13 — Mediation: Handling Fetched Delivery Latencies

5.3.3 Mediation Behaviour – Subscription Filters

Another optimisation that SIRI can make in order to reduce the network traffic is the aggregation of
subscriptions for a given Subscriber into a single filter group for notification and delivery.

When a Subscription is created for a Subscriber to a given SIRI functional service type, it is automatically
assigned to a Subscription Filter. Subsequently, a single notification is sent for all subscriptions of a Filter. For
example, if a SIRI Vehicle Monitoring Service Subscriber has subscriptions to two separate LINEs, and
SITUATIONs arise for both of them (from data notifications from the Publisher) within the data refresh or
processing cycle of the Notification Producer, only a single Data Ready Notification will be sent to the service
Consumer, and the single Data Supply message will return the payload for both data ready notifications as

FprEN 15531-2:2015 (E)

21

content within a single Service Delivery. Thus for each Subscription Filter, the system retains ‘Already Notified’
state, which gets reset every time last update is updated.

A subscriber may add different Subscriptions at different times to a Subscription Filter.

Some implementations support only a single Subscription Filter per Subscriber; others may support multiple
filters. If multiple filters are supported and a Subscriber wishes to use a separate Subscription Filter, a Filter
Identifier should be indicated on the subscription request. If no filter is specified on a request, the first filter
created for the Subscriber will be used by default. The use of multiple filters allows a Subscriber interested in
many different subscriptions from the same Notification Producer to keep transaction boundaries (and the
computational overhead needed for the filtering, transmission and processing of delivery packages) down to a
manageable size. Otherwise there is the possibility that a small urgent item of information will be swamped
within a larger packet of data for additional content that is triggered for delivery at the same time.

Subscription Filtering is shown in Figure 14 for a Direct Delivery sequence (the Fetched Delivery sequence
would be logically similar).

— The initial subscription request contains two separate individual service subscription requests (001, 002).

— On subscription, the Producer checks if there is any current data (1.1) according to both subscriptions’
topic expressions, and if any data is found, the initial delivery (#1) will contain data for both subscriptions.

— If an additional Subscription (003) is created for the Subscriber, the Producer will add it to the
Subscriber’s Subscription Filter.

— The Producer only make a notification/delivery (#2) if there is any data for the new subscription: in
Figure 14 none is shown as having occurred. However if there was any data, i.e. if any data is sent at all,
it will include updates for any subscription of the Consumer, even if the other updates have not reached
the threshold. Again, the time (T2) of supply will be recorded against each individual subscription.

— Subsequent notifications from the Publisher (2.1) are filtered until the sensitivity threshold is exceeded, at
which point (T3) a new data notification and delivery (#3) is sent to the Consumer. The data supply
includes updates since the last supply time T2 affecting any subscription in the Subscription Filter.

FprEN 15531-2:2015 (E)

22

Figure 14 — Mediation: Subscription Filter

5.4 Recovery Considerations for Publish Subscribe

5.4.1 Introduction

Publish/Subscribe is a stateful pattern of interaction, and consideration shall be given to failure of either the
Notification Producer, or Consumer systems, or to the communications connection between them.

Once created, subscriptions are held by the Notification Producer. In the event of a system failure by the
Notification Producer service, SIRI does not require the Notification Producer to recover the subscriptions.
Instead it is the responsibility of the Subscriber to recreate new subscriptions to replace the existing ones lost
in the failure. Each Consumer knows the Subscriber which submitted its subscriptions (usually these will be
the same implementation entity).

It is then the Consumer’s responsibility to monitor whether the Notification Producer Service and the
connection to it are still active, and to inform the Subscriber if the Subscription needs to be renewed. SIRI

FprEN 15531-2:2015 (E)

23

supports two ways of monitoring the Notification Producer (i) Status Polling (a required SIRI capability), and
(ii) Heartbeat (an optional SIRI capability). This allows implementers to choose the most efficient approach
given the traffic and cycle characteristics of their deployment.

From v2.0 SIRI also allows a SubscriptionTerminatedNotifcation to be sent by a Producer to inform
Subscribers that their subscriptions have been terminated unilaterally.

5.4.2 Check Status – Polling

The Consumer may send periodic Check Status requests to the Notification Producer to check that
Notification Producer is still active. A Check Status message is a required feature of all SIRI implementations.

Figure 15 — Check Status — UML Sequence

5.4.3 Heartbeat – Pinging

Using a Heartbeat message, the Notification Producer sends a regular notification message to the Consumer
at a predefined interval to show that it is still active, even if no update messages have been sent. This
removes the need for the Consumer to poll, as the Consumer can detect a potential failure by the failure of a
Heartbeat to arrive within the prescribed interval. The heartbeat interval may either be preconfigured for the
whole system, or be specified as a parameter in the subscription request specified for individual subscription
on the Subscription Policy.

Figure 16 — Heartbeat Message — UML Sequence

5.4.4 Degrees of Failure

There are in effect different degrees of failure of the Producer, or in access to the producer: (i) Total Failure in
which case the subscriptions are lost and (ii) Partial failure, in which case the subscriptions are still in
existence, but the data flow is interrupted for a period. Total failure shall always be marked by a new Service
Start time.

FprEN 15531-2:2015 (E)

24

To recover from partial failure the Producer shall send all current data for a subscription since the last update
for that subscription

5.4.5 Detecting a Failure of the Producer

5.4.5.1 Detecting a Failure Using Check Status

A Consumer can at any time explicitly poll to detect a Service breakdown by the Notification Producer, by
sending a CheckStatusRequest to the Service. A CheckStatusResponse should be returned. A Common
Check Status message is used for all services (Figure 15).

Figure 17 — Check Status with Recovery & Re-subscribe — UML Sequence

If there has been only a brief interruption of service, this may be detected by comparing the start time for the
service returned on the check status message with the start time found on previous messages, (either a
SubscriptionResponse, or a CheckStatusResponse). A hiatus suggests that there may be missed data,
and/or subscriptions, and so the Consumer asks the Subscriber to recreate its subscriptions.

5.4.5.2 Detecting a Failure Using Heartbeat

If a Heartbeat capability is available, a Consumer may detect a Service failure by monitoring for the absence
of HeartbeatNotification messages within the expected interval, rather than by polling explicitly for service
availability and integrity with a CheckStatusRequest. If a failure is detected, the Consumer asks the
Subscriber to recreate the subscription. Again there are two levels of failure: (i) Total Absence of Service with
loss of subscriptions, and (ii) Brief Interruption of Service, with subscriptions retained but loss of real-time
data.

FprEN 15531-2:2015 (E)

25

Figure 18 — Heartbeat Monitoring – Loss of Service — UML Sequence

Figure 19 — Heartbeat Monitoring – Interruption of Service — UML Sequence

5.4.6 Detecting a Failure of the Consumer

It is the Consumer entity’s responsibility to restart itself after a failure of its system. It shall decide if it may
have missed data and take any appropriate recovery action – either to get the current message, or to
completely recreate its subscriptions.

In the event of System failure by the Notification Consumer, the Notification Producer will continue to send
Notification messages to the Notification Consumer until the subscription has expired. In order to optimise
efficiency, a well behaved Consumer will terminate its subscription if it is no longer needed, or if a prolonged
outage is planned.

An implementation may have a policy that states the Notification Producer will drop a subscription if it does not
receive an acknowledgement for Deliveries within a certain period of tolerance.

FprEN 15531-2:2015 (E)

26

5.5 Recovery Considerations for Direct Delivery

For Direct Delivery, two levels of resilience are possible: (i) Simple Despatch and (ii) Acknowledged Despatch.

For Simple Despatch, data is sent without an acknowledgement of receipt. For a Request/Response data
supply interaction, the Requestor knows that it is waiting for a response and can determine whether it has
been satisfied. However for asynchronous, i.e. Publish/Subscribe interaction, the Notification Producer can
send a data message to the Consumer at any arbitrary point in time; so if for some reason the message fails
to arrive, the transmission failure will not be detected by either party and so no recovery action will be
attempted. In many cases this is sufficient, as another update shortly after will update the messages as
effectively as a recovery action.

Figure 20 — Robust Direct Delivery — UML Sequence

With Acknowledged Despatch, reliable transmission is signalled though an additional ‘Acknowledge Data
Received’ response from the Consumer to the Producer, confirming successful receipt of data. If the
Notification Producer fails to receive a response from the Consumer, it would then keep resending at
preconfigured intervals, exactly as for the initial notification step of Full Fetched Delivery.

5.6 Request Parameters and Interactions

Both Request/Response and Publish/Subscribe interactions involve the sending of requests to a Service
running on a server. In both cases, the requests shall specify information about the content that is to be
returned, including any variable aspects of real-time behaviour, as well as additional policies for carrying out
the request, such as a throttle on the volume of data to return.

SIRI uses a standard set of parameters for the various terms of the requests, organized according to WS Pub-
Sub concepts such as Endpoint Reference, Topic, Request Policy, Subscription Policy and Payload.

For a given type of SIRI Functional Service interface (for example Connection Timetable, Vehicle Monitoring,
or General Message), the analogous groups of parameters are used on both Request/Response and
Publish/Subscribe requests, for example to specify the content to be returned, (e.g. the data reference
system, the topics of interest, the temporal window, and the level of detail), and the processing policy.

Additional parameters are specified on a subscription to control those aspects of processing which are specific
to the asynchronous servicing of subscriptions, i.e. that apply to the Publisher and Notification Producer
processes; for example, sensitivity threshold.

Some parameter types shall be included on individual requests; others may be configured for all message
exchanges.

The SIRI parameter set includes some terms which are common to all requests, regardless of service
interface (for example; end point references, delivery policies), and others which vary according to the
individual Service type. Table 1 shows the general groups of parameters, and whether they are common or
whether they vary by message type.

FprEN 15531-2:2015 (E)

27

Table 1 — SIRI Request and Subscription Parameters

Group Subgroup SIRI REQUEST SIRI SUBSCRIPTION COM
MON

Notes

Identity Identity RequestTimestamp Y Timestamp

Endpoint
_
Referenc
es

Address Address Address Y URL to respond

 ConsumerAddress Y

Participant RequestorRef SubscriberRef Y Participant Reference, also
known as Control Centre Code

MessageIdentifier SubscriptionIdentifier Y Issued by Subscriber

Content SiriServiceVersion Y

Topic
Filters

Topic N Depends on message type

TemporalWindow N Depends on message type

DetailLevelToReturn N Depends on message type

Language Y May be configured.

Policy VolumeFilter Y Number of items in Response.

Depends on message type

Delivery DeliveryMethod Y Direct or Fetched. May be
preconfigured.

AllowMultipartDelivery Y May be preconfigured

Subscript
ion

Lease – InitialTerminationTime Y Also known as. Lease Wanted.

Notification
Filters

– SensitivityFilter N Also known as. Hysteresis.

Depends on message type.

Heartbeat
Policy

– HeartbeatPolicy Y May be preconfigured.

The general parameters which are common to all service request are concerned with managing the
messages: that is, (i) how messages may be referenced, and (ii) the delivery policy: how responses should be
delivered.

The parameters which vary according to each SIRI Functional Service are concerned with (i) the content to be
included – the Topic terms, (ii) how the request should be interpreted – the Request Policy terms, and (iii) any
parameterised aspects controlling the Publishing and Notification processes – the Subscription Policy terms
(e.g. sensitivity threshold, preview window etc.). Table 2 provides a comparative list of the SIRI Functional
Service Specific parameters.

FprEN 15531-2:2015 (E)

28

Table 2 — Topics and Policies for SIRI Functional Service Types

 Production
Timetable

Estimated
Timetable

Stop
Timetable

Stop
Monitoring

Vehicle
Monitoring

Connection
Timetable

Connection
Monitoring

Topic
(reference)
content

ValidityPerio
d

PreviewIn
terval

 PreviewInterval – PreviewInt
erval

– – Departure
Window

StartTime – ArrivalWindo
w

Connecting
TimeFilter

TimetableVersionRef MonitoringRef VehicleMonit
oringRef

ConnectionLinkRe

OperatorRef OperatorRef – – –

LineRef

DirectionRef

– – – DestinationRef – –

– – – StopVisitTypes VehicleRef – DatedVehic
leJourneyR
ef

Request
Policy

 MaximumStopV
isits

MaximumVeh
icles

 MinimumStopV
isits

 MaximumTextL
ength

 Language

 IncludeTranslations

 – – – DetailLevel – –

 – – – MaxPreviousCalls – –

 – – – MaxOnwardsCallss – –

Subscription
Policy

IncrementalU
pdates

-- – IncrementalUpdates – –

– – – ChangeBeforeUpdates – ChangeBef
oreUpdates

– – – UpdateInterval – –

 General
Message

Situation Exchange Facility Monitoring

Topic
(reference)
content

PreviewInterv
al

PreviewInterval PreviewInterval

– StartTime StartTime

InfoChannelR
ef

SituationRef FacilityRef

– Various Situation
properties

Various properties

Request
Policy

Language

IncludeTranslations

FprEN 15531-2:2015 (E)

29

– MaximumNumberOf
SituationElements

MaximumNumberOfFac
ilityCOnditions

Subscriptio
n Policy

– IncrementalUpdates IncrementalUpdates

5.7 Error Conditions for Requests

Requests may fail for a variety of reasons, in practice the reasons fall into two groups: Systemic and
Application.

— Systemic error conditions prevent the request from being interpreted further: for example the request
times out, or the request itself cannot be validated against the prescribed XML schema version, or the
system does not support the requested version level; in which case the request will be rejected outright.
The request string is echoed back to assist diagnosis. Typically the errors occur in the communications or
transport layer. They are generic, i.e. not specific to the SIRI application.

— Application level error conditions involve the interpretation of the request parameters and the detection of
an error condition according to the semantics of the application. For example, a Stop Monitoring request
might ask for information about a stop that is not covered by the system. Most terms of a request have a
specific application error condition associated with them.

Table 3 describes the SIRI error conditions, with condition, description, code and severity (sev).

Table 3 — System and Application Error Conditions

Group Condition Description Code Sev

Success OK (true) Request successful 200 5

Systemic
Error

RequestTimeout Server not responding 408 1

InvalidRequest The server does not "understand" the request. The client should
not repeat the request.

400 1

Unauthorized User name and password are required for the request, or
credentials not satisfied

401 1

Forbidden The server "understands" the request, but cannot carry it out. 403 2

NotFound The requested URL was not found. 404 1

Distribution UnknownParticipant Recipient for a message to be distributed is unknown. +SIRI v2.0 601 2

 UnknownEndpoint Endpoint to which a message is to be distributed is unknown.
+SIRI v2.0

602 2

 EndpointDeniedAccess Distribution message could not be delivered because not
authorised. +SIRI v2.0

603 2

 EndpointNotAvailable Recipient of a message to be distributed is not available. +SIRI
v2.0

604 2

Access UnapprovedKey User authentication key is not approved. SIRI v2.0 610 1

Application
Error

VersionNotSupported Version of SIRI interface is not supported. 701 2

CapabilityNotSupported Service does not support the requested capability. 704 2

ServiceNotAvailable Functional service is not available to use (but it is still capable of
giving this response).

710 2

AccessNotAllowed Requestor is not authorised to the service or data requested
because a capability is not enabled.

720 2

InvalidDataReferences Request contains references to identifiers that are not known.
+SIRI v2.0

730 2

FprEN 15531-2:2015 (E)

30

Group Condition Description Code Sev

BeyondDataHorizon Request is for data outside of real-time data horizon. 732 2

NoInfoForTopic Valid request was made but service does not hold any data for
the requested topic expression.

740 4

ParametersIgnored Request contained parameters that were not supported by the
producer. A response has been provided but some parameters
have been ignored. +SIRI v2.0

742 3

UnknownExtensions Request contained extensions that were not supported by the
producer. A response has been provided but some or all
extensions have been ignored. +SIRI v2.0

743 3

UnknownSubscriber Subscriber not found. 721 2

UnknownSubscription Subscription not found. 722 2

AllowedResourceUsage
Exceeded

Valid request was made, but request would exceed the
permitted resource usage of the client.

742 2

OtherError Other Error Type 700

Each Application Error Condition arising from a failed request comprises an error code and a textual
description. Each term of a SIRI Functional Service request typically has a different error condition associated
with it. The SIRI schema defines explicit error code for application errors wherever possible: these are reified
as concrete tags, for example, NoInfoForTopicError, UnknownSubscriber, etc. The most specific error
condition should always be returned – the catchall OtherError should only be used in exceptional
circumstances.

Table 4 relates the request terms to their possible error conditions.

Table 4 — Application Error Conditions Related to Request Parameters

Group Subgroup Request Term Possible Error
Condition

Notes

System Version SIRIVersion VersionNotSupported Shall respond with same level.

Endpoin
t
Referen
ces

Endpoint ParticipantRef UnknownSubscriber I.e. Control Centre not known.

Identity SubscriptionIdentifier UnknownSubscription

Credentials Credentials AccessNotAllowed Not known, or not authorised.

Commo
n
Content

Version SIRIServiceVersion VersionNotSupported

Topic Filters Topic NoInfoForTopic.

CapabilityNotSupported.

Depends on message type.

TemporalWindow BeyondDataHorizon Depends on message type.

DetailLevelToReturn CapabilityNotSupported Depends on message type.

Language CapabilityNotSupported

Policy VolumeFilter AllowedResourceUsageE
xceeded

Delivery DeliveryMethod CapabilityNotSupported

Subscri
ption

Lease InitialTerminationTim
e

BeyondDataHorizon Depends on message type.

Notification
Filters

SensitivityFilter AllowedResourceUsageE
xceeded

Depends on message type.

Heartbeat
Policy

HeartbeatPolicy CapabilityNotSupported

FprEN 15531-2:2015 (E)

31

5.8 Versioning

5.8.1 Introduction

Several different release versions of the SIRI schema may be current at the same time, and may be run on
the same client or server computer.

Each Request or Subscription Request should indicate a version level. If the SIRI Functional Service supports
the version level requested, then all responses, both synchronous and asynchronous, should be at the same
version level as that of the request. If the version level is not supported, an error condition will be returned.
This makes it possible to deploy new upgrades at different times on different systems and still maintain
continuous operations.

There are in effect two separate version levels within SIRI: (i) the SIRI Version, and (ii) the SIRI Functional
Service Version. Both use the standard version ‘n.mx’ numbering scheme as per ISO 24531:2013 where ‘n’ is
the major release number, ‘m’ is a point version number, and ‘x’ indicates a draft status. For example; ‘2.0‘,
‘3.2a’

5.8.2 The Overall SIRI Framework Version Level

The overall SIRI Version indicates the level of the general messages and communications framework.

5.8.3 The SIRI Functional Service Type Version Level

The SIRI Functional Service Version indicates the level of a specific SIRI Functional Service, such as the Stop
Monitoring or General Message service. Each SIRI Functional Service type has its own version level. The
SIRI Functional Service knows whether its version level is compatible with the Framework version level, so in
practice the SIRI Functional Service Type Version level can be used as a single definitive version identifier on
requests for a particular SIRI Functional Service type.

5.9 Access Controls: Security and Authentication

5.9.1 Introduction

Implementers may wish to control access by subscribers and consumers to all or some services and to all or
some date with a service. SIRI considers two separate layers of access control; (i) System Level, and; (ii)
Application Level.

5.9.2 System Mechanisms External to SIRI Messages

5.9.2.1 General

SIRI may be used in combination with a normal range of System Level Security Measures, such as IP
authentication, encryption, or VPN tunnelling. These are general purpose mechanisms, implemented at the
transport level, that are independent of SIRI. Implementers will choose mechanisms appropriate to the
security requirements of their own deployments.

WS-PubSub lays down a number of recommendations for the securing of systems see [WS-Security,
www.oasis-open.org] and traffic. In particular only authorised participants should be allowed access to access
or subscribe to the system in the first place.

The SIRI Simple Web Services (+SIRI v2.0) are intended to support direct delivery of SIRI data to consumer
devices and additionally may include an authentication key.

http://www.oasis-open.org/

FprEN 15531-2:2015 (E)

32

5.9.2.2 Authentication Key (+SIRI v2.0)

SIRI requests may include authentication data elements. These are primarily for use by SIRI simple web
services which may wish to control or track access to end services by particular applications. An Account
Identifier may be used to attribute requests to a specific user account for authentication or reporting purposes.
An Authentication key may be used to authenticate the request to ensure the user is a registered client for that
user ID.

NOTE The account is not typically for an individual user, but for an application. It could be used to track and
authenticate an individual user, but then appropriate consent and privacy mechanisms should also be included.

5.9.2.3 Application Level Authentication

SIRI also supports the concept of Application Level Authentication to allow a given Service Provider to specify
an approved requestor or subscriber’s allowed access to specific types of content and to specific levels of
resource usage by the application. Access control is an optional feature of SIRI, and may be supported for
some or all services. Application level access controls allow the same SIRI system to provide services to
many different customers from the same endpoint addresses, restricting the information out given to individual
authorised users to use specific content and services.

There are two components to the SIRI Access Controls: (i) Configuration through an Access Permission
Matrix, and (ii) Run time Request Authentication.

5.9.2.4 The Access Permission Matrix

The Access Permission matrix is a configuration-time schema used to specify the access that a Service will
provide to specific users. It comprises a tuple of a Participant Reference, a Service Type and Capability, and a
Service specific Topic or Policy. For example an entry might specify that participant ‘ABC’ may make
request/response requests to the SIRI Stop Monitoring service to see departures for a specific stop with
identifier ‘123’ (See 6.1.6 for an example encoding). Permissions for different SIRI functional services are
described under the individual service clauses in Part 3.

5.9.2.5 Request Authentication

The Notification Producer uses the Participant Reference to validate requests against the Access Permission
matrix. Invalid requests are rejected with an appropriate error condition. As far as possible, subscription
requests are authenticated once at the time of subscription, rather than dynamically on each data notification.

5.10 Service Discovery

5.10.1 Introduction

Once there are many systems covering a large number of stops, it is of great benefit to have discovery
services that allow systems to automatically provision the reference data to be used. Service discovery can be
broken down into three steps: (i) Universal Server Discovery; (ii) SIRI Capability Discovery; and (iii) SIRI
Functional Service Coverage Discovery.

5.10.2 Discovery of Servers that Support SIRI Services

The first stage in universal discovery is to find the servers and sites supporting the SIRI protocols. Since
current use of AVMS almost invariably involves interaction between known parties who operate subject to
appropriate agreements, universal discovery is not currently a SIRI requirement. If needed in future, general
purposes web service discovery protocols such as WSDL are likely to be sufficient.

The Discovery services conform to the WS-PubSub requirement to have mechanisms to disclose metadata
about the publication services.

FprEN 15531-2:2015 (E)

33

5.10.3 Discovery of the Capabilities of a SIRI Server

Once a SIRI server is known, a client needs to know which SIRI Functional Services and features it supports,
and at which version level. SIRI defines a simple Capability Discovery message, which allows a client to
obtain this information from each SIRI Producer Service. The Service returns a fixed list of the capabilities
supported by the service, and the configuration details. See Capability Matrix in 5.11, and individual service
descriptions in Part 3.

Implementing a CapabilityDiscoveryResponse is not mandatory; however if the implementation does not
provide an actual CapabilityResponse, it should at least be possible to provide an exact description of its
capabilities, version level and configuration, as a static XML document identical to the payload of a
CapabilityDiscoveryResponse message.

The CapabilityDiscoveryResponse can be used to implement adaptive services, which are able to tune their
interaction to the capabilities of the service; the Capability model also has an important role for documenting
the exact specification of a particular implementation.

The CapabilityDiscoveryResponse also returns the ServiceRequestContext which provides a set of
configuration parameters that formally define the properties of a given SIRI implementation.

5.10.4 Discovery of the Coverage of a Given SIRI Functional Service

Once a client knows what services a SIRI server can provide, it may wish to know what data it holds, and what
access rights it has to the data and services.

Application data discovery services are specific to the application content of the SIRI Functional Services. For
example, to find the stops that a particular SIRI Stop Monitoring Service covers or the Product Category codes
used. Such discovery services can be extremely useful for reducing the costs of provisioning and re-
provisioning systems. A coverage service typically involves a simple request that is run occasionally by the
client to find out all the values of reference data that may be used in requests. For example the places or
points, or sets of reference data such as the LINEs and DESTINATIONs supported. In SIRI coverage
discovery services are optional and are discussed under the particular service type. Table 5 shows the SIRI
coverage discovery services.

Table 5 — SIRI Discovery Service Matrix

Feature Required? Capability Name Notes

Discovery

O StopDiscovery Returns Stops covered by service SERVICE FRAME

O LineDiscovery Returns Lines & direction covered by service SERVICE FRAME

O ProductCategoryDiscovery Returns Product categories used in SIRI RESOURCE FRAME

O ServiceFeatureDiscovery Returns Service features used in SIRI RESOURCE FRAME

O VehicleFeatureDiscovery Returns Vehicle features used in SIRI RESOURCE FRAME

O InfoChannelDiscovery Returns available SIRI GMS info channels SIRI ONLY

O ConnectionLinksDiscovery Returns Connection Links covered by
service

RESOURCE FRAME

SIRI includes as informative content examples of a discovery services.

Alternatively it is possible to use NeTEx to exchange any type of reference data, including stops, lines, etc.
NeTEx data objects may be exchanged using the SIRI protocol, using a NeTEx DataObjectRequest &
DataObjectDelivery(see the NeTEx specification). A SERVICE FRAME is used to group SCHEDULED STOP
POINTs, LINEs. A RESOURCE FRAME is used to group a set of Product categories or other codes.

FprEN 15531-2:2015 (E)

34

5.11 Capability Matrix

5.11.1 Introduction

SIRI comprises a number of different functional services and capabilities; some of the capabilities can be used
as alternatives. Each SIRI Capability is given a name, indicating a related set of specific input parameters,
output parameters or processing behaviour which will be present if the capability is supported, and that will be
absent if it is not. The capabilities serve several purposes:

To document the functions of SIRI in a modular fashion.

To indicate which features are essential and which are optional.

To allow a variety of levels of implementation to match different operational requirements.

To accommodate different legacy variations.

To allow customers to specify exactly what functions should be present in a system being procured.

To manage the compatibility of different implementations.

Table 6 summarises the named SIRI Functional Capabilities and whether they are required or optional.

The SIRI Capability Discovery service (see 11.2), Table 42 is itself an optional capability of a SIRI
implementation which may be used to discover the Capabilities of a given implementation.

5.11.2 SIRI General Capabilities

Table 6 — SIRI General Capabilities

Feature Required? Capability Name Sub-capability

Management R Versioning RequestChecking

R Capability CapabilityChecking

O CapabilityDiscovery

Interaction At least one InteractionPattern DirectRequest

Publish/Subscribe

R Mediation GetCurrent

R GetLastUpdate

R ChangeSensitivity

O Historic

R SubscriptionFilter SingleFilter

O MultipleFilters

O DynamicContext --

O AccessControl ByCapability

O ByTopicValue

Delivery At least one DeliveryMethod DirectDelivery

FetchedDelivery

O ConfirmDelivery --

FprEN 15531-2:2015 (E)

35

Feature Required? Capability Name Sub-capability

O VisitCountIsOrder --

O MultipartDespatch --

Service Status R CheckStatus --

O Heartbeat --

Discovery O Capabilities --

Message
Transport

R MessageTransport HttpPost

O SoapEnvelope

At least one Addresses Implicit

Explicit

O Compression None | Gzip | other

6 Request/Response

6.1 Making a Direct Request

6.1.1 Introduction

Request/Response is the simplest pattern of SIRI interaction. For data exchange, the requestor sends a
Service Request to a Specific SIRI Functional Service as located by the Service’s Endpoint Reference (see
10.2 later), and is returned an immediate data delivery, i.e. a response message that contains application
payload data.

Each specific SIRI Functional Service Request is wrapped within a general ServiceRequest element, and the
corresponding delivery is similarly wrapped within a ServiceDelivery element. There is a different SIRI
Functional Service Request message type for each different SIRI Functional Service, and also a distinct SIRI
Functional Service Delivery message with which to return the content for the individual service (see Table 7).

Table 7 — SIRI Request Delivery Types

 SIRI Functional Service Request Delivery

 Container ServiceRequest ServiceDelivery

Timetable Production ProductionTimetableRequest ProductionTimetableDelivery

Real-time EstimatedTimetableRequest EstimatedTimetableDelivery

Progress

Stop Timetable StopTimetableRequest StopTimetableDelivery

Stop Monitoring StopMonitoringRequest StopMonitoringDelivery

StopMonitoringMultipleRequest StopMonitoringDelivery

Vehicle Monitoring VehicleMonitoringRequest VehicleMonitoringDelivery

Interchange

Connection Timetable ConnectionTimetableRequest ConnectionTimetableDelivery

Connection Monitoring ConnectionMonitoringRequest ConnectionMonitoringFeederDelivery

ConnectionMonitoringDistributorDelivery

Info General Message GeneralMessageRequest GeneralMessageDelivery

Amenities Facility Monitoring FacilityMonitoringRequest FacilityMonitoringDelivery

Incidents Situation SituationExchangeRequest SituationExchangeDelivery

FprEN 15531-2:2015 (E)

36

Multiple Functional Service Requests may be included within a ServiceRequest, but all requests shall be for
the same service type.

6.1.2 ServiceRequest Message — Element

The ServiceRequest is sent to the [GetData] endpoint of a SIRI Functional Service. Table 8 shows the
common parameters that may be specified on a ServiceRequest.

Each request may contain Endpoint information, including Endpoint Reference Properties. For Direct delivery
the endpoint address is the [Consumer] endpoint to which the data is sent. For fetched Delivery it is the
[Notify] endpoint to which the data ready notification is to be sent.

The Endpoint properties may include:

— The Participant Reference, which will be unique to the requestor in communication between the two
parties

— A Message Identifier, with which to reference the specific request message in subsequent conversations,
and which will be unique within the scope of the SIRI Functional Service Type and the Participant scope.

NOTE Both the ServiceRequest and the concrete SIRI Functional Service Requests contained within it can have
their own specific message references.

If SIRI Access Controls are supported, the Participant Reference is used to determine if the Requestor is
authorised to make the request for which it has asked. The Reference will be checked against the Access
Matrix, and if the permitted access is exceeded, the NotAuthorised error condition will be returned.

Table 8 — ServiceRequest — Attributes

ServiceRequest +Structure Request from a Consumer to a Producer for
immediate delivery of data. Answered with a
ServiceDelivery. (For Fetched Delivery this
will be after a further DataReadyRequest).

 ServiceRequestContext 0:1 +Structure General request properties – typically
configured rather than repeated on request.

log RequestTimestamp 1:1 xsd:dateTime Timestamp on request.

Auth.

AccountId 0:1 +Structure Account Identifier. May be used to attribute
requests to a specific user account for
authentication or reporting purposes +SIRI
v2.0

AccountKey 0:1 +Structure Authentication key for request. May be used
to authenticate the request to ensure the
user is a registered client. +SIRI v2.0

Endpoi
nt
Proper
ties

Address 0:1 EndpointAddr
ess

Address to which response is to be sent:
[Notify] endpoint. If omitted, this may also be
determined from RequestorRef and
preconfigured data, or the http request.

RequestorRef 1:1 →ParticipantC
ode

Identifier of Requestor.

May be used to identify an individual
participant system or individual device client.
If used for a device client should be an
anonymous token, divulged with user
consent.

MessageIdentifier 0:1 MessageQuali
fier

Arbitrary identifier that may be given to
message.

FprEN 15531-2:2015 (E)

37

Deleg
ator
Endpoi
nt

DelegatorAddress 0:1 EndpointAddr
ess

Address of originated system to which
delegated response is to be returned. +SIRI
2.0.

If request has been proxied by an
intermediate aggregating system this
provides tracking information relating to the
original requestor. This allows the
aggregation to be stateless.

DelegatorRef 0:1 →ParticipantC
ode

Identifier of delegating system that originated
message. +SIRI 2.0

 Concrete service subscription If more than one, shall all be same type.

Payloa
d

a ProductionTimetableRequest

-1:*

+Structure See SIRI Part 3 – Production Timetable.

b EstimatedTimetableRequest +Structure See SIRI Part 3 – Estimated Timetable.

c StopTimetableRequest +Structure See SIRI Part 3 – Stop Timetable.

d StopMonitoringRequest +Structure See SIRI Part 3 – Stop Monitoring.

e StopMonitoringMultipleRequ
est

+Structure See SIRI Part 3 – Stop Monitoring.

f VehicleMonitoringRequest +Structure See SIRI Part 3 – Vehicle Monitoring.

g ConnectionTimetableReques
t

+Structure See SIRI Part 3 – Connection Timetable.

h ConnectionMonitoringReque
st

+Structure See SIRI Part 3 – Connection Monitoring.

i GeneralMessageRequest +Structure See SIRI Part 3 – General Message.

j FacilityMonitoringRequest +Structure See SIRI Part 4 – Facility Monitoring. SIRI
v1.3.

k SituationExchangeRequest +Structure See SIRI Part 5 – Situation Exchange. SIRI
v1.3.

6.1.3 The ServiceRequestContext — Element

6.1.3.1 General

The ServiceRequestContext contains any general configuration parameters that are common to all request
types and that may be preconfigured, rather than being repeated on individual requests. Examples of such
parameters are the delivery method and the default National Language. A primary role of the
ServiceRequestContext is for documentation: it records a number of important properties of a given SIRI
implementation. Normally the context is fixed for the implementation and cannot be changed on individual
request, so is not explicitly passed. If the implementation supports a DynamicContext, then a context may be
attached to individual requests to specify overrides to those properties which the implementation allows to be
set dynamically. The SIRI Capability Discovery Request can be used to retrieve the default context.

Table 9 shows the common parameters that may be specified in a ServiceRequestContext.

FprEN 15531-2:2015 (E)

38

Table 9 — ServiceRequestContext Parameters

ServiceRequestContext +Structure General request properties – typically
configured rather than repeated on
request.

Server
Endpoint
Address

CheckStatusAddress 0:1 EndpointAddress Address to which CheckStatus requests
are to be sent.

SubscribeAddress 0:1 EndpointAddress Address to which requests for new
subscriptions are to be sent.

ManageSubscriptionAddress 0:1 EndpointAddress Address to which requests to manage
existing subscriptions are to be sent. If
absent, same as SubscribeAddress.

GetDataAddress 0:1 EndpointAddress Address to which requests to return data
are to be sent.

Client
Endpoint
Address

StatusResponseAddress 0:1 EndpointAddress Address to which CheckStatus responses
and HeartbeatNotification messages are
to be sent. If absent, same as
SubscriberAddress.

SubscriberAddress 0:1 EndpointAddress Address to which subscription responses
are to be sent.

NotifyAddress 0:1 EndpointAddress Address to which notifications requests
are to be sent. If absent, same as
SubscriberAddress.

ConsumerAddress 0:1 EndpointAddress Address to which data is to be sent. If
absent, same as NotifyAddress.

Namespa
ce

DataNameSpaces 0:1 +Structure Scope for identifiers

NameSpa
ce

 StopPointNameSpace 0:1 xsd:anyUrl Namespace for stop references.

LineNameSpace 0:1 xsd:anyUrl Namespace for LINE names and
DIRECTIONs.

ProductCategoryNameSp
ace

0:1 xsd:anyUrl Namespace for product categories

ServiceFeatureNameSpac
e

0:1 xsd:anyUrl Namespace for Service Features

VehicleFeatureNameSpac
e

0:1 xsd:anyUrl Namespace for Vehicle features

Language Language 0:1 xml:lang Default language.

Location

a WgsDecimalDegrees

0:1

EmptyType Geospatial coordinates are given as
WGS84 latitude and longitude, decimal
degrees of arc.

b GmlCoordinateFormat srsNameType Name of GML Coordinate format used for
Geospatial points in responses.

Units

DistanceUnits 0:1 xsd:normalizedS
tring

Units for DistanceType. Default is metres.
+SIRI v2.0

VelocityUnits 0:1 xsd:normalizedS
tring

Units for VelocityType. Default is metres
per second. +SIRI v2.0

Temporal
Span

DataHorizon 0:1 PositiveDuration
Type

Maximum data horizon for requests

RequestTimeout 0:1 PositiveDuration
Type

Default Timeout for requests

FprEN 15531-2:2015 (E)

39

Delivery
Method

DeliveryMethod 0:1 DeliveryMethodE
num

Delivery interaction pattern to use to
deliver data.

MultipartDespatch 0:1 xsd:boolean Whether multi-part delivery is allowed, i.e.
the breaking up of updates into more than
one delivery messages with a MoreData
flag,

ConfirmDelivery 0:1 xsd:boolean Whether Consumers should issue an
acknowledgement on successful receipt of
a delivery. Default is ‘false’.

Resource
Use

MaximumNumberOfSubscrip
tions

0:1 xsd:positiveInteg
er

Maximum number of subscriptions that
can be sustained by a subscriber

Prediction

AllowedPredictors 0:1 AllowedPredictor
Enum

Who may make a prediction.
Documentation only. Default is ‘anyone’.

PredictionFunction 0:1 xsd:string Allows a named to be given to the
prediction function. Documentation only.

any Extensions 0:1 any Placeholder for user extensions.

6.1.3.2 DeliveryMethod — Allowed values

Allowed values for DeliveryMethod (DeliveryMethodEnumeration).

Table 10 — DeliveryMethod —Allowed Values (SIRI 2.0)

Value Description

fetch Deliveries are sent in two steps using notifications.

direct Deliveries are sent direct without use of notifications.

6.1.3.3 AllowedPredictors — Allowed values

Allowed values for AllowedPredictors (AllowedPredictorEnumeration).

Table 11 — AllowedPredictors —Allowed Values (SIRI 2.0)

Value Description

avmsOnly Predictions may only be made by central AVMS prediction
engine.

anyone Downstream systems may interpolate or compute predictions.

6.1.4 Common Properties of ServiceRequest Messages — Element

All the individual SIRI Functional Service request message types, (for example StopMonitoringRequest,
VehicleMonitoringRequest), etc., have a number of common elements – see Table 12.

FprEN 15531-2:2015 (E)

40

Table 12 — SIRI Functional Service Common Request — Attributes

xxxRequest +Structure SIRI Functional service request for service xxx

Attribute
s

version 1:1 VersionString Version Identifier of Functional Service, e.g. ‘1.0c’.

Endpoin
t
Properti
es

RequestTimestamp 1:1 xsd:dateTime Time of Request

MessageIdentifier 0:1 MessageQualifier Arbitrary unique reference to this message.

Topic {Depends on Specific SIRI Functional Service – See Part 3 xxxRequest.}

Request
Policy

{Depends on Specific SIRI Functional Service– See Part 3 xxxRequest.}

any Extensions 0:1 any Placeholder for user extensions.

6.1.5 ServiceRequest — Example

The following is a generalised example of a ServiceRequest. It includes a ServiceRequestContext context –
normally the context would be implicit.

<Siri xmlns="http://www.siri.org.uk/siri"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.siri.org.uk/http://www.siri.org.uk/\schema\1.0\sir
i.xsd" version=“1.0”>
 <ServiceRequest>
 <!–=======GENERAL CONTEXT========–>
 <ServiceRequestContext>
 <DataNameSpace>
 <RequestorParticipantRef>NADER</RequestorParticipantRef>
 </DataNameSpace>
 <Language>en</Language>
 <DataHorizon>P1Y2M3DT10H30M</DataHorizon>
 <RequestTimeout>P1Y2M3DT10H30M</RequestTimeout>
 <DeliveryMethod>direct</DeliveryMethod>
 <MultipartDespatch>true</MultipartDespatch>
 <ConfirmDelivery>false</ConfirmDelivery>
 </ServiceRequestContext> <!–======ENDPOINT REFERENCES===–>
 <RequestTimestamp>2004-12-17T09:30:47-05:00</RequestTimestamp>
 <RequestorRef>NADER</RequestorRef>
 <xxxRequest version=“1.0”>>
 ………
 </xxxRequest>
 <xxxRequest version=“1.0”>>
 ………
 </xxxRequest>
 </ServiceRequest>

6.1.6 Access Controls on a Request

If the SIRI implementation supports the optional AccessControl capability, then requests are checked to see if
the client is permitted to make the requested use of a SIRI Functional Service.

The access controls for a service may be specified by an Access Control Matrix comprising a set of
permissions. The permission structures allowed for each service are included in the respective SIRI
Functional Service schemas, and may be referenced by configuration documents. For example, the following
example shows some permissions for using the SIRI Stop Monitoring service. It states that all participants
may use the RequestResponse service, but only specific users may use Publish Subscribe. It also restricts
public access to line A1; a separate permission specifically grants access to user NADER.

http://www.siri.org.uk/siri
http://www.w3.org/2001/XMLSchema-instance
http://www.siri.org.uk/http:/www.siri.org.uk/

FprEN 15531-2:2015 (E)

41

<StopMonitoringPermissions xmlns=“http://www.siri.org.uk/siri”
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.siri.org.uk/ siri_stopMonitoring_service.xsd">
<!– ==General permissions
 All participants may use RequestResponse.
 Only Specific users may use PublishSubscribe ========= –>
 <StopMonitoringPermission>
 <AllParticipants/>
 <GeneralCapabilities>
 <RequestResponse>true</RequestResponse>
 <PublishSubscribe>false</PublishSubscribe>
 </GeneralCapabilities>
 <OperatorPermissions>
 <AllowAll>true</AllowAll>
 </OperatorPermissions>
 <!— Public can’t access line A1 –>
 <LinePermissions>
 <LinePermission>
 <Allow>false</Allow>
 <LineRef>A1</LineRef>
 </LinePermission>
 </LinePermissions>
 <StopMonitorPermissions>
 <StopMonitorPermission>
 <Allow>false</Allow>
 <MonitoringRef>Bar</MonitoringRef>
 </StopMonitorPermission>
 </StopMonitorPermissions>
 </StopMonitoringPermission>
 <!– ==========Permissions for NADER - May Also Pub Sub May see line A1
========= –>
 <StopMonitoringPermission>
 <ParticipantRef>NADER</ParticipantRef>
 <GeneralCapabilities>
 <PublishSubscribe>true</PublishSubscribe>
 </GeneralCapabilities>
 <!– Permissions for NADER - May see line A1 –>
 <LinePermissions>
 <LinePermission>
 <Allow>true</Allow>
 <LineRef>A1</LineRef>
 <DirectionRef>Foo</DirectionRef>
 </LinePermission>
 </LinePermissions>
 </StopMonitoringPermission>
</StopMonitoringPermissions>

6.2 Receiving a Data Delivery

6.2.1 Introduction

Delivery responses are sent to the [Consumer] endpoint for the request. The delivery may be received as a
single step Direct Delivery or as the last step of a Fetched Delivery.

Each Delivery comprises a general ServiceDelivery message, containing one or more SIRI Functional
Service delivery responses, for example ConnectionMonitoringFeederDelivery, StopMonitoringDelivery.

http://www.siri.org.uk/siri
http://www.w3.org/2001/XMLSchema-instance
http://www.siri.org.uk/

FprEN 15531-2:2015 (E)

42

Most Deliveries contain one or more instances of different types of ‘Item' specific to the service, for example
MonitoredStopVisit, GeneralMessage etc. All items have a time of recording and an optional identifier; they
may variously contain other model elements associated with the item type.

Table 13 — Delivery Content Elements

Delivery Item (Recorded At) Primary Association Children

ProductionTimetabl
eDelivery

DatedTimetable DatedVehicleJourney DatedCall
TargetedInterchange

EstimatedTimetable
Delivery

EstimatedTimetableVersionFrame EstimatedVehicleJourney EstimatedCall

EstimatedServiceJourneyIn
terchange

StopTimetableDeliv
ery

TimetabledStopVisit TargetedVehicleJourney TargetedCall

TimetabledStopVisitCancellation – –

StopMonitoringDeli
very

MonitoredStopVisit MonitoredVehicleJourney MonitoredCall

MonitoredStopVisitCancellation – –

LineNotice – –

LineNoticeCancellation – –

VehicleMonitoringD
elivery

VehicleActivity MonitoredVehicleJourney MonitoredCall

VehicleActivityCancellation – –

ConnectionTimetab
leDelivery

TimetabledFeederArrival ConnectingVehicleJourney

(Feeder)

–

TimetabledFeederArrivalCancellati
on

–

ConnectionMonitori
ngFeederDelivery

MonitoredFeederArrival ConnectingVehicleJourney

(Feeder)

–

MonitoredFeederArrivalCancellatio
n

–

ConnectionMonitori
ngDistributorDelive
ry

WaitProlongedDeparture
ConnectingVehicleJourney

(Distributor)

–

StoppingPositionChangedDepartu
re

–

DistributorDepartureCancellation –

GeneralMessageDe
livery

GeneralMessage – –

GeneralMessageCancellation – –

FacilityMonitoringD
elivery

FacilityMonitoringDelivery FacilityCondition

SituationExchange
Delivery

SituationExchange Delivery PTSituation +Structure

6.2.2 ServiceDelivery

6.2.2.1 ServiceDelivery— Element

The ServiceDelivery contains any general parameters that are common to all delivery types.

FprEN 15531-2:2015 (E)

43

Table 14 — ServiceDelivery— Attributes

ServiceDelivery +Structure Response from Producer to Consumer to deliver payload
data. Either answers a direct ServiceRequest, or satisfies a
subscription asynchronously. May be sent directly in one step,
or be fetched in response to a Data Supply Request.

Attributes srsName 0:1 xsd:string Default GML coordinate format for any spatial points defined
in response by Coordinates parameter.

Log ResponseTimestamp 1:1 xsd:dateTime Time individual response element was created.

Endpoint
properties

ProducerRef 0:1 →ParticipantC
ode

Participant reference that identifies producer of data. May be
available from context.

Address 0:1 EndpointAddr
ess

Address to which any acknowledgment should be sent. Only
needed if ConfirmDelivery specified.

ResponseMessageIdentif
ier

0:1 MessageQuali
fier

An arbitrary unique reference associated with the response
which may be used to reference it.

RequestMessageRef 0:1 →MessageQu
alifier

Reference to a unique message identifier associated with the
request which gave rise to this response.

Delegator
endpoint

DelegatorAddress 0:1 EndpointAddr
ess

Address of originated system to which delegated response is
to be returned. +SIRI 2.0.

If request has been proxied by an intermediate aggregating
system this provides tracking information relating to the
original requestor. This allows the aggregation itself to be
stateless.

DelegatorRef 0:1 →ParticipantC
ode

Identifier of delegating system that originated message. +SIRI
2.0

Status

Status 0:1 xsd:boolean Whether the complete request could be processed
successfully or not. Default is true. If any of the individual
requests within the delivery failed, should be set to false.

ErrorCondition 0:1 See below Description of any error or warning conditions that applies to
the overall request. More Specific error conditions should be
included in the error conditions attached to each functional
service response that fails.

a CapabilityNotSuppor
tedError 1:1 +Error Capability not supported.

 b OtherError +Error Error other than a well-defined category.

 Description 0:1 →ErrorDescri
ption

Description of Error.

MoreData 0:1 xsd:boolean Whether there are more delivery messages making up this
data supply group. Default is false.

Optional SIRI Capability: MultipartDespatch.

Payload Concrete SIRI Service: One or more of a single type of the following:

 a ProductionTimetable
Delivery 0:* +Structure See SIRI Part 3 – Production Timetable.

 b EstimatedTimetable
Delivery

 +Structure See SIRI Part 3 – Estimated Timetable.

 c StopTimetableDelive
ry

 +Structure See SIRI Part 3 – Stop Timetable.

 d StopMonitoringDeliv
ery

+Structure See SIRI Part 3 – Stop Monitoring.

 e VehicleMonitoringDe
livery

+Structure See SIRI Part 3 – Vehicle Monitoring.

FprEN 15531-2:2015 (E)

44

f ConnectionTimetable
Delivery

+Structure See SIRI Part 3 – Connection Timetable.

g ConnectionMonitorin
gFeederDelivery

+Structure See SIRI Part 3 – Connection Monitoring.

h ConnectionMonitorin
gDistributorDelivery

+Structure See SIRI Part 3 – Connection Monitoring.

i GeneralMessageDeli
very

+Structure See SIRI Part 3 – General Message.

 j FacilityMonitoringDel
ivery

 +Structure See SIRI Part 4 – Facility Monitoring. SIRI v1.3

 k SituationExchange
Delivery

 +Structure See SIRI Part 5 – Situation Exchange. SIRI v1.3

6.2.2.2 Common Properties of SIRI Functional Service Delivery Messages

All the individual SIRI Functional Service delivery message types, (for example StopMonitoringDelivery,
VehicleMonitoringDelivery), etc., have a number of common elements – see Table 15.

NOTE Cardinality with first member indicating "-1" stands for indicating a choice

Table 15 — SIRI Function Service xxxDelivery— Attributes

xxxDelivery +Structure Delivery for xxx Service

Lo
g

ResponseTimestamp 1:1 xsd:dateTime Time individual response element was created.

En
dp
oin
t
pro
per
tie
s

RequestMessageRef 0:1 →MessageQu
alifier

For direct requests, Identifier of request that this Delivery
satisfies.

SubscriberRef 0:1 →Participant
Code

Required if Delivery is for a Subscription, Participant Reference
of Subscriber.

SubscriptionFilterRef 0:1 →Subcription
FilterCode

Unique identifier of Subscription filter to which this subscription is
assigned. If there is only a single filter, then can be omitted.

SubscriptionRef 1:1 →Subscriptio
nQualifier

Required if Delivery is for a Subscription, Identifier of
Subscription issued by Requestor. Unique within Subscriber (i.e.
within ParticipantRef of Subscriber), and SIRI Functional
Service type.

De
leg
ati
on

DelegatorAddress 0:1 Xsd:anyURI Address of original Consumer, i.e. requesting system to which
delegating response is to be returned. +SIRI 2.0

DelegatorRef 0:1 →Participant
Code

Identifier of delegating system that originated message. +SIRI
2.0

St
atu
s

Status 0:1 xsd:boolean Whether the complete request could be processed successfully
or not. Default is true. If any of the individual requests within the
delivery failed, should be set to false.

ErrorCondition 0:1 +Structure Description of any error or warning conditions that apply to the
specific functional request or response.

 choice One of the following Error codes.

A ServiceNotAvaila
bleError Error: Functional service is not available to use (but it is still

capable of giving this response).

b CapabilityNotSup
portedError

-1:1

+ Error Error: Capability not supported.

c AccessNotAllowe
dError

+Error Error: Requestor is not authorised to the service or data
requested.

FprEN 15531-2:2015 (E)

45

d InvalidDataRefere
ncesError

+Error Error: Request contains references to identifiers that are not
known. +SIRI v2.0.

E BeyondDataHoriz
on

+Error Error: Data period or subscription period is outside of period
covered by service. +SIRI v2.0.

f NoInfoForTopicE
rror

+Error Error: Valid request was made but service does not hold any
data for the requested topic expression.

G ParametersIgnor
edError

+Error Error: Request contained parameters that were not supported by
the producer. A response has been provided but some
parameters have been ignored. +SIRI v2.0.

H UnknownExtensi
onsError

+Error Error: Request contained extensions that were not supported by
the producer. A response has been provided but some or all
extensions have been ignored. +SIRI v2.0.

i AllowedResource
UsageExceededE
rror

+Error Error: Valid request was made but request would exceed the
permitted resource usage of the client.

j OtherError +Error Error other than a well-defined category.

 Description 0:1 →ErrorDescri
ption

Description of Error.

 ValidUntil 0:1 xsd:dateTime End of data horizon of the data producer.

 ShortestPossibleCycl
e

0:1 PositiveDurati
onType

Minimum interval at which updates can be sent.

 DefaultLanguage Xsd:language Default language for text elements.

Pa
ylo
ad

{Content Specific to SIRI Functional Service type. See Part 3.}

an
y

Extensions 0:1 any Placeholder for user extensions.

6.2.2.3 ServiceDelivery — Example

For specific examples, see the individual concrete SIRI Functional Services.

The following is a generic example of a ServiceDelivery in the case of a direct delivery.

<Siri xmlns=“http://www.siri.org.uk/siri”
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.siri.org.uk/http://www.siri.org.uk/\schema\1.0\sir
i.xsd" version=“1.0”>
 <!– =======RESPONSE============================= –>
<ServiceDelivery>
 <!–=======HEADER=============================== –>
 <RequestRef>2004-12-17T09:30:46-05:00</RequestRef>
 <RequestorRef>NADER</RequestorRef>
 <Status>true</Status>
 <MoreData>false</MoreData>
 <!–=======FUNCTIONAL SERVICE HEADER================== –>
 < XxxDelivery version=“1.0">
 <RequestTimestamp>2004-12-17T09:30:47-05:00</RequestTimestamp>
 <Status>true</Status>
 <ValidUntil>2004-12-17T09:30:47-05:00</ValidUntil>
 <ShortestPossibleCycle>PT3M</ShortestPossibleCycle>
 <!–==== FUNCTIONAL SERVICE PAYLOAD ======== –>
 <Xxx content>

http://www.siri.org.uk/siri
http://www.w3.org/2001/XMLSchema-instance
http://www.siri.org.uk/http:/www.siri.org.uk/

FprEN 15531-2:2015 (E)

46

………
 </xxxDelivery>
 </ServiceDelivery>

The following is an example of a ServiceDelivery in the case of a subscription interface.

<ServiceDelivery>
 <!–=======HEADER== –>
 <RequestorRef>NADER</RequestorRef>
 <RequestRef>2004-12-17T09:30:46-05:00</RequestRef>
 <Status>true</Status>
 <MoreData>false</MoreData>
 <!–======= FUNCTIONAL SERVICE HEADER ====================== –>
 < XxxDelivery version=“1.0">
 <ResponseTimestamp>2004-12-17T09:30:47-05:00</ ResponseTimestamp>
 <SubscriberRef>NADER</SubscriberRef>
 <SubscriptionRef> MYSUB457</SubscriptionRef>
 <Status>true</Status>
 <ValidUntil>2004-12-17T09:30:47-05:00</ValidUntil>
 <ShortestPossibleCycle>PT3M</ShortestPossibleCycle>
 <!–==== FUNCTIONAL SERVICE PAYLOAD ====================== –>
 <Xxx content>
………
 </xxxDelivery>
</ServiceDelivery>

7 Subscriptions

7.1 Setting up Subscriptions

7.1.1 Introduction

A Subscription is created by sending a SubscriptionRequest to the Notification Producer of the desired SIRI
Functional Service type, as located by the [Subscription] endpoint. The Notification Producer service responds
with a SubscriptionResponse message that confirms the granting of the subscription, or provides an error
condition that indicates why the subscription could not be created. The Notification Producer then creates the
accepted subscriptions and starts to supply them with data.

The specific SIRI Functional Service Subscription Requests are wrapped within a general
SubscriptionRequest element, and any corresponding delivery for the Functional Service is similarly
wrapped within a ServiceDelivery element. There is a different SIRI Subscription Request message type for
each different SIRI Functional Service type, and also a distinct SIRI Subscription Delivery message type for
each response type (see Table 16).

FprEN 15531-2:2015 (E)

47

Table 16 — SIRI Request and Delivery Types

SIRI
Functional
Service

SubscriptionRequest ServiceDelivery Publishes

Production
Timetable

ProductionTimetableSubscription
Request

ProductionTimetableDelivery Timetables

Estimated
Timetable

EstimatedTimetableSubscriptionR
equest

EstimatedTimetableDelivery Timetable
Changes

Stop
Timetable

StopTimetableSubscriptionReques
t

StopTimetableDelivery Stop
Timetable

Stop
Monitoring

StopMonitoringSubscriptionReque
st

StopMonitoringDelivery Visits to stop

Vehicle
Monitoring

VehicleMonitoringSubscriptionRe
quest

VehicleMonitoringDelivery Vehicle
Movements

Connection
Timetable

ConnectionTimetableSubscription
Request

ConnectionTimetableDelivery Connections

Connection
Monitoring

ConnectionMonitoringSubscriptio
nRequest

ConnectionMonitoringFeederDelivery

ConnectionMonitoringDistributorDelive
ry

Connection
changes

General
Message

GeneralMessageSubscriptionRequ
est

GeneralMessageDelivery Travel News

Facility
Monitoring

FacilityMonitoring
SubscriptionRequest

FacilityMonitoringDelivery Amenity
Status

Situation
Exchange

SituationExchange
SubscriptionRequest

SituationExchange Delivery Incidents

Multiple functional service subscriptions may be created by a single SubscriptionRequest. The
SubscriptionRequest is a container for one or more individual Functional Service subscription requests. This
is indicated by xxxSubscriptionRequest subelements, where ‘Xxx’ indicates the individual SIRI Functional
Service being requested. A given SubscriptionRequest can only contain individual service requests for a
single SIRI Functional Service type.

If the SubscriptionRequest is compound, that is, for multiple subscriptions, the response will also be
compound, that is, contain individual ResponseStatus subelements for each service subscription that is
successfully created. If any individual Functional Service cannot be created, the SubscriptionResponse
should contain a separate ResponseStatus with an error description for each failed service subscription
request, and the overall response status should be set to false.

The SubscriptionIdentifier is an Endpoint Property that uniquely identifies each individual functional service
subscription. The subscription identifier is made up of two parts: the Participant Reference, and a
SubscriptionIdentifier which will be unique within the Subscriber’s Participant Reference and SIRI Functional
Service type. It will be included in subsequent deliveries to the Consumer, and is also used to manage the
Subscription at a later date.

If a Consumer Address is not supplied on the individual subscription request, it will be obtained from
configuration details that associate the Participant Reference with a specific Address. See 10.2 on Logical
Endpoints.

If a Service Subscription Request is submitted with a Subscriber reference of a Subscription that already
exists, the existing subscription is deleted and a new subscription created in its place. Logically this is the
same as sending a TerminateSubscription message, followed by a new SubscriptionRequest message to
create a new subscription.

FprEN 15531-2:2015 (E)

48

7.1.2 SubscriptionRequest

7.1.2.1 SubscriptionRequest — Element

The Subscription request is sent to the [Subscriber] endpoint of a SIRI Functional Service.

When requesting each new Functional Service Subscription, a subscriber can specify both a [Subscriber]
endpoint address and a [Notify] endpoint that identifies a separate Consumer address. Confirmation that the
subscription has been created goes to the [Subscriber] endpoint. The [Notify] endpoint determines the internet
address where data ready notifications should be sent.

Table 17 shows the parameters that may be specified on a SubscriptionRequest, either as parameters, or
through the request context.

Table 17 — SubscriptionRequest — Attributes

SubscriptionRequest +Structure Request from Subscriber to Producer for a
subscription. Answered with a
SubscriptionResponse.

Log RequestTimestamp 1:1 xsd:dateTime Time of subscription request issued by Requestor.

Auth.

AccountId 0:1 +Structure Account Identifier. May be used to attribute
requests to a specific user account for
authentication or reporting purposes +SIRI v2.0

AccountKey 0:1 +Structure Authentication key for request. May be used to
authenticate the request to ensure the user is a
registered client. +SIRI v2.0

Endp
oint
prope
rties

Address 0:1 EndpointAddress Address to which subscription response is to be
sent: [Subscriber] endpoint. This may also be
determined from RequestorRef and
preconfigured data.

RequestorRef 1:1 →ParticipantCode Identifier of requestor –Identifier of Participant.

MessageIdentifier 0:1 MessageQualifier Optional Arbitrary unique reference to the
Subscription Request message.

DelegatorAddress 0:1 EndpointAddress Address of originated system to which delegated
response is to be returned. +SIRI 2.0.

If request has been proxied by an intermediate
aggregating system this provides tracking
information relating to the original requestor. This
allows the aggregation to be stateless.

DelegatorRef 0:1 →ParticipantCode Identifier of delegating system that originated
message. +SIRI 2.0

ConsumerAddress 0:1 EndpointAddress Address to which notification is to be sent: if
different from Address: [Notify] endpoint. This may
also be determined from RequestorRef and
preconfigured data.

SubscriptionFilterIdentifie
r

0:1 xsd:NMTOKEN Identifier of Subscriber Channel with which this
subscription is to be aggregated for purposes of
notification and delivery. If absent, use the default
channel. If present, use any existing channel with
that identifier, if none found, create a new one.
Optional SIRI feature.

Policy SubscriptionContext 0:1 +Structure General subscription parameters.

FprEN 15531-2:2015 (E)

49

Paylo
ad

Concrete service
subscription:

 choice SIRI Functional Service Subscriptions. For a
given SubscriptionRequest, shall all be of the
same type.

a ProductionTimetableS
ubscriptionRequest

–1:*

+Structure See SIRI Part 3 - Production Timetable.

b EstimatedTimetableSu
bscriptionRequest

+Structure See SIRI Part 3- Estimated Timetable.

c StopTimetableSubscri
ptionRequest

+Structure See SIRI Part 3 - Stop Timetable.

d StopMonitoringSubscr
iptionRequest

+Structure See SIRI Part 3 - Stop Monitoring.

e VehicleMonitoringSub
scriptionRequest

+Structure See SIRI Part 3 - Vehicle Monitoring.

f ConnectionTimetableS
ubscriptionRequest

+Structure See SIRI Part 3 - Connection Timetable.

g ConnectionMonitoring
SubscriptionRequest

+Structure See SIRI Part 3 - Connection Monitoring.

h GeneralMessageSubsc
riptionRequest

+Structure See SIRI Part 3 – General Message.

i FacilityMonitoring
SubscriptionRequest

+Structure See SIRI Part 4 - Facility Monitoring. SIRI v1.3

j SituationExchange
SubscriptionRequest

+Structure See SIRI Part 5 – Situation Exchange. SIRI v1.3

7.1.2.2 SubscriptionRequestContext — Element

The SubscriptionRequestContext contains any general configuration parameters that are common to all
subscription request types and that may be preconfigured, rather than being repeated on individual requests.
A primary role of the SubscriptionRequestContext is for documentation: it records the important properties
of a SIRI implementation. Normally the context is fixed for the configuration. If the implementation supports a
DynamicContext, then a context may be attached to individual requests and to override those properties which
the implementation allows to be set dynamically. The SIRI Capability Discovery Request can be used to
retrieve the current SubscriptionRequestContext

Table 18 shows the common parameters that may be specified in a SubscriptionRequestContext.

Table 18 — SubscriptionContext — Attributes

SubscriptionRequestContext +Structure General values that apply to subscription.
Usually set by configuration.

Payload HeartbeatInterval 0:1 PositiveDurationType Interval for heartbeat.

7.1.2.3 The Common Properties of SIRI Functional Service Subscription Requests

All the individual SIRI Functional Service subscription request message types, (for example
StopMonitoringSubscriptionRequest, VehicleMonitoringSubscriptionRequest, etc.), have a number of
common elements – see Table 19.

FprEN 15531-2:2015 (E)

50

Table 19 — SIRI Functional Service Common Subscription — Attributes

xxxSubscription +Structure Request for a subscription to a SIRI Functional Service

Identity SubscriberRef 0:1 →ParticipantCod
e

Participant Identifier of Subscriber. Normally this will be
given by context, i.e. be the same as on the Subscription
Request.

SubscriptionIde
ntifier

1:1 SubscriptionQuali
fier

Identifier to be given to Subscription. Unique within
SubscriberRef and service type.

Lease InitialTerminati
onTime

1:1 xsd:dateTIme Requested end time for subscription. See SIRI
subscription procedures.

Request xxxRequest 1:1 +Structure Request for the Specific SIRI Functional Service.

Policy {Depends on Specific SIRI Functional Service. See Part 3.}

any Extensions 0:1 xsd:any* Placeholder for user extensions.

7.1.2.4 SubscriptionRequest — Example

The following is a general example of a SubscriptionRequest. For specific examples, see the individual
concrete SIRI Functional Services.

<SubscriptionRequest>
 <RequestTimestamp>2004-12-17T09:30:47-05:00</RequestTimestamp>
 <RequestorRef> NADER</RequestorRef>
 <XxxSubscriptionRequest>
 <SubscriberRef> NADER</SubscriberRef>
 <SubscriptionIdentifier> MYSUB457</SubscriptionIdentifier>
 <InitialTerminationTime>2004-12-17T15:30:47-
05:00</InitialTerminationTime>
 <xxxRequest version=“1.0”>>
 ……….
 </xxxRequest version=“1.0”>>
 <ChangeBeforeUpdates>PT2M</ChangeBeforeUpdates>
 <IncrementalUpdates>true</IncrementalUpdates>
 </xxxSubscriptionRequest>
 </SubscriptionRequest>
</Siri>

7.1.3 SubscriptionResponse

7.1.3.1 SubscriptionResponse — Element

After the Notification Producer has received the subscription request, it acknowledges with a single
SubscriptionResponse message: this contains a separate ResponseStatus instance for each individual
subscription processed. The response is sent to the [Subscriber] endpoint of the request. The response may
include an Address element which indicates the actual subscription manager endpoint.

Table 20 — SubscriptionResponse — Attributes

SubscriptionResponse +Structure Response from Producer to Consumer to inform whether
subscriptions have been created. Answers a previous
SubscriptionRequest.

Log ResponseTimesta
mp

1:1 xsd:dateTime Time individual response element was created.

Endpoi
nt

Address 0:1 EndpointAddr
ess

Address for further communication about subscription, i.e.
[Subscription] endpoint for Subscription manager.

FprEN 15531-2:2015 (E)

51

proper
ties

ResponderRef 0:1 →ParticipantC
ode

Participant reference that identifies responder.

RequestMessage
Ref

0:1 →MessageQu
alifier

Reference to an arbitrary unique reference associated with
the request which gave rise to this response.

Deleg
ation

DelegatorAddress 0:1 EndpointAddr
ess

Address of originated system to which delegated response
is to be returned. +SIRI 2.0.

If request has been proxied by an intermediate aggregating
system this provides tracking information relating to the
original requestor. This allows the aggregation to be
stateless.

DelegatorRef 0:1 →ParticipantC
ode

Identifier of delegating system that originated message.
+SIRI 2.0

Payloa
d

ResponseStatus 1:* +Structure Status information about the request, or else error
conditions.

SubscriptionMana
gerAddress

0:1 EndpointAddr
ess

Endpoint address of subscription manager if different from
that of the Producer or known default.

ServiceStartedTi
me

0:1 xsd:dateTime Time at which service providing the subscription was last
started. Can be used to detect restarts. If absent, unknown.

any Extensions 0:1 xsd:any* Placeholder for user extensions.

The ResponseStatus element supplies information on whether an individual SIRI Functional Service
subscription request could be processed. If a subscription is granted, the response can include information on
the maximum possible update rate of the data producing system, as well as the available data horizon. If the
subscription could not be created, it should contain an appropriate error condition. The Subscriber may then
resubmit a corrected request to create just these subscriptions.

FprEN 15531-2:2015 (E)

52

Table 21 — ResponseStatus — Attributes

ResponseStatus +Structure Contains information about the processing of an
individual service subscription – either success info or an
error condition.

Log ResponseTimestamp 0:1 xsd:dateTime Time individual response element was created.

Endp
oint

RequestMessageRef 0:1 →MessageQu
alifier

Reference to a unique message identifier associated with
the request which gave rise to this response.

SubscriberRef 0:1 →ParticipantC
ode

Unique identifier of Subscriber – Participant reference.

SubscriptionRef 1:1 →Subscription
Qualifier

Unique identifier of subscription within Service and
Subscriber.

Paylo
ad

Status 0:1 xsd:boolean Whether the request could be processed successfully or
not. Default is true.

ErrorCondition 0:1 +Structure Error conditions that apply to a service request. Choice of
one of the following:

a CapabilityNotSup
portedError

–1:1

+Error Capability not supported.

b AccessNotAllowe
dError

+Error Requestor is not authorised to the service or data
requested.

c NoInfoForTopicEr
ror

+Error Valid request was made but service does not hold any
data for the requested topic expression.

d AllowedResource
UsageExceededEr
ror

+Error Valid request was made but request would exceed the
permitted resource usage of the client.

e OtherError +Error Error other than a well-defined category.

 Description 0:1 →ErrorDescri
ption

Description of the error in plain text.

Info

ValidUntil 0:1 xsd:dateTime End of the data horizon of the data producer; omitted if
the request lies completely within the data horizon.

ShortestPossibleCycl
e

0:1 PositiveDurati
onType

Minimum separation between two updates depends on
the processing cycle of the AVMS.

any Extensions 0:1 xsd:any* Placeholder for user extensions.

7.1.3.2 SubscriptionResponse — Example

The following is an example of a SubscriptionResponse.

 <!– =======RESPONSE================================== –>
 <SubscriptionResponse>
 <ResponseTimestamp>2004-12-17T09:30:47-05:00</ResponseTimestamp>
 <ResponderRef>KUBRICK</ResponderRef>
 <!– Good request –>
 <ResponseStatus>
 <ResponseTimestamp>2004-12-17T09:30:47-05:01</ResponseTimestamp>
 <SubscriptionRef>0003456</SubscriptionRef>
 <Status>true</Status>
 <ValidUntil>2004-12-17T09:30:47-05:00</ValidUntil>
 <ShortestPossibleCycle>P1Y2M3DT10H30M</ShortestPossibleCycle>
 </ResponseStatus>
 <!– Bad request –>
 <ResponseStatus>
 <ResponseTimestamp>2004-12-17T09:30:47-05:02</ResponseTimestamp>

FprEN 15531-2:2015 (E)

53

 <SubscriptionRef>0003457</SubscriptionRef>
 <Status>false</Status>
 <ErrorCondition>
 <NoInfoForTopicError/>
 </ErrorCondition>
 </ResponseStatus>
 </SubscriptionResponse>
</Siri>

7.2 Subscription Validity

A Subscription Request includes a request for an Initial Termination Time, representing the desired lease of
the Subscription as an absolute UTC end time. The time stamp should be selected so that it lies beyond the
last potential data registration time. The subscription will only be granted if the lease can be met, otherwise an
error will be returned.

The lease defines how long the server shall store and manage the subscription. Subscribers should not ask
for leases that are longer than necessary, as each subscription takes up system resources. Subscriptions can
have validities that exceed the limits of a single operating day.

7.3 Terminating Subscriptions

7.3.1 Introduction

Subscriptions are automatically deleted by the Notification Producer Service after expiration of their validity.

A Subscriber may terminate a subscription before expiration of validity by sending a
TerminateSubscriptionRequest subscription request to the Subscription Manager. The
TerminateSubscriptionRequest, contains one or more sub-elements of type SubscriptionRequestRef
(7.1), each of which identifies a subscription to be ended.

In WS-PubSub subscription management is done through a different interface to that of the Notification
Producer: although the Notification Producer is the factory for new subscriptions, it does not manage them.
Changes to subscriptions are directed at a distinct endpoint ([Subscription]: the subscription manager) with a
separate interface, allowing a proper separation of concern. In SIRI a separate
TerminateSubscriptionRequest message is used therefore for deleting messages, rather than making
subscription changes a type of Functional Service request.

In systems that use data delivery acknowledgement a Notification Producer may terminate a subscription if it
fails to receive a delivery acknowledgement within a specified timeout. In this case the Notification Producer
may send a TerminateSubscriptionResponse to the Consumer to inform it of its eviction.

It is normally the Subscribers responsibility to monitor the service stats through heartbeats. However if a
Producer service has to terminate it may additionally issue a SubscriptionTerminatedNotifcation to alert
subscribers that they need to restart..

7.3.2 The TerminateSubscriptionRequest

7.3.2.1 TerminateSubscriptionRequest — Element

A Subscriber terminates its subscriptions to a service by sending a TerminateSubscriptionRequest to the
Subscription Manager, i.e. the [Subscriber] endpoint of the SIRI functional service. A
TerminateSubscriptionRequest may contain either a specific subscription identifier, or a special value of All,
indicating that all subscriptions for the subscriber should be terminated.

FprEN 15531-2:2015 (E)

54

Table 22 — TerminateSubscriptionRequest — Attributes

TerminateSubscriptionRequest +Structure Request from Subscriber to Subscription
Manager to terminate a subscription. Answered
with a TerminateSubscriptionResponse.

Id RequestTimestamp 1:1 xsd:dateTime Creation time of notice of change message.

Auth.

AccountId 0:1 +Structure Account Identifier. May be used to attribute
requests to a specific user account for
authentication or reporting purposes +SIRI v2.0

AccountKey 0:1 +Structure Authentication key for request. May be used to
authenticate the request to ensure the user is a
registered client. +SIRI v2.0

Endpoint
properties

Address 0:1 EndpointAddress Address of Subscriber.

RequestorRef 1:1 →ParticipantCode Identifies the Requestor.

RequestMessageIde
ntifier

0:1 MessageQualifier Arbitrary unique identifier for this message. Can
be used to reference it subsequently.

Delegation DelegatorAddress 0:1 EndpointAddress Address of originated system to which
delegated response is to be returned. +SIRI
2.0.

If request has been proxied by an intermediate
aggregating system this provides tracking
information relating to the original requestor.
This allows the aggregation to be stateless.

DelegatorRef 0:1 →ParticipantCode Identifier of delegating system that originated
message. +SIRI 2.0

Topic

SubscriberRef 0:1
➔ParticipantCodeType Participant identifier of Subscriber. Subscription

ref will be unique within this. SIRI v1.3

 choice Either All or a named Subscription.

a All
–1:1

EmptyType Terminate all subscriptions for the Subscriber.

b SubscriptionRef SubscriptionQualifier Identifies the specific subscription to be
terminated.

any Extensions 0:1 xsd:any* Placeholder for user extensions.

7.3.2.2 TerminateSubscriptionRequest — Example

The following is an example of a TerminateSubscriptionRequest message:

 <TerminateSubscriptionRequest version=“1.0” lang="en">
 <RequestTimestamp>2004-12-17T09:30:47-05:00</RequestTimestamp>
 <RequestorRef>NADER</RequestorRef>
 <All>Text</All>
 </TerminateSubscriptionRequest>

7.3.3 The TerminateSubscriptionResponse

7.3.3.1 TerminateSubscriptionResponse — Element

The TerminateSubscriptionResponse is sent back to the [Subscriber] endpoint indicated by the request,
and will contain an acknowledgment or error code for each subscription terminated.

FprEN 15531-2:2015 (E)

55

Table 23 — TerminateSubscriptionResponse — Attributes

TerminateSubscriptionResponse +Structure Response from Subscription Manager to
Consumer to inform whether subscriptions
have been removed. Answers a
TerminateSubscriptionRequest.

Endp
oint
prope
rties

ResponseTimestamp 1:1 xsd:dateTime Creation time of response.

ResponderRef 0:1 →ParticipantCode Identifies the Producer.

RequestMessageRef 0:1 MessageQualifier Reference to a message for which this is
the response.

Deleg
ation

DelegatorAddress 0:1 EndpointAddress Address of originated system to which
delegated response is to be returned.
+SIRI 2.0.

If request has been proxied by an
intermediate aggregating system this
provides tracking information relating to
the original requestor. This allows the
aggregation to be stateless.

DelegatorRef 0:1 →ParticipantCode Identifier of delegating system that
originated message. +SIRI 2.0

Paylo
ad

TerminationResponseSta
tus

1:* +Structure Status of each response to each
subscription termination.

 ResponseTimestamp 0:1 xsd:dateTime Creation time of response status

SubscriberRef 0:1 →ParticipantCode Unique Identifier of Subscriber.

SubscriptionRef 1:1 SubscriptionQualifier Unique Identifier of Subscription

Status 0:1 xsd:boolean Whether the subscription could be
cancelled. Default is true.

ErrorCondition 0:1 +Structure Error Condition that applies to a
TerminateSubscriptionResponse.

 choice One of the following error codes.

a CapabilityNotSup
portedError

–1:1

+Error Capability not supported.

b UnknownSubscri
berError

+Error Subscriber not found.

c UnknownSubscri
ptionError

+Error Subscription not found.

d OtherError +Error Other Error.

 Description 0:1 →ErrorDescription Description of the error in plain text.

any Extensions 0:1 xsd:any* Placeholder for user extensions.

7.3.3.2 TerminateSubscriptionResponse — Example

The following is an example of a TerminateSubscriptionResponse message:

 <TerminateSubscriptionResponse>
 <ResponseTimestamp>2004-12-17T09:30:47-05:00</ResponseTimestamp>
 <ResponderRef>KUBRICK</ResponderRef>
 <!– GOOD Response –>
 <TerminationResponseStatus>
 <ResponseTimestamp>2004-12-17T09:30:47-05:00</ResponseTimestamp>
 <SubscriberRef>NADER</SubscriberRef>

FprEN 15531-2:2015 (E)

56

 <SubscriptionRef>0000456</SubscriptionRef>
 <Status>true</Status>
 </TerminationResponseStatus>
 <!– BAD Response –>
 <TerminationResponseStatus>
 <ResponseTimestamp>2004-12-17T09:30:47-05:00</ResponseTimestamp>
 <SubscriberRef>NADER</SubscriberRef>
 <SubscriptionRef>0000457</SubscriptionRef>
 <Status>false</Status>
 <ErrorCondition>
 <UnknownSubscriptionError/>
 </ ErrorCondition>
 </TerminationResponseStatus>
 </TerminateSubscriptionResponse>

7.3.4 The SubscriptionTerminatedNotification (SIRI 2.0)

7.3.4.1 SubscriptionTerminatedNotification — Element

The SubscriptionTerminatedNotifcation can be used by a producer to give an explicit warning to a consumer
that a subscription has had to be terminated. This allows for a more efficient handling of loss of service errors
in some circumstances by giving the client immediate notication that it will need to restart a subscription to a
service.

Table 24 — SubscriptionTerminatedNotification — Attributes

SubscriptionTerminatedNotification +Structure Notification from Subscription Manager to
SUbscriber that subscribtion has been terminate a
subscription. (+Siri 2.0)

Log ResponseTimestamp 1:1 xsd:dateTime: Time Notifcation is issued..

Endp
oint

ProducerRef 0:1 →ParticipantCode Identifies the Producer whose subscription is
being terminated.

Address 0:1 EndpointAddress Endpoint Address to which acknowledgements to
confirm delivery are to be sent.

ResponseMessageIdentifier 0:1 MessageQualifier An arbitrary unique reference associated with the
response which may be used to reference it.

RequestMessageRef 0:1 MessageQualifier Reference to an arbitrary unique identifier
associated with the request which gave rise to this
response.

Deleg
ator

DelegatorAddress 0:1 EndpointAddress Address of originated system to which delegated
response is to be returned. +SIRI 2.0.

If request has been proxied by an intermediate
aggregating system this provides tracking
information relating to the original requestor. This
allows the aggregation to be stateless.

DelegatorRef 0:1 →ParticipantCodeTyp
e

Identifier of delegating system that originated
message. +SIRI 2.0

Subs
criptio
n

SubscriberRef 0:1 →ParticipantCodeTyp
e

Participant identifier of Subscriber. Whose
subscription has been terminated.

SubscriptionFilterRef 0:1 →FilterRefStructure Unique identifier of Subscription filter to which this
subscription is assigned. If there is onlya single
filter, then can be omitted.

SubscriptionRef 1:1 SubscriptionQualifier Identifies the specific subscription that has been
terminated.

FprEN 15531-2:2015 (E)

57

ErrorCondition 0:1 +Structure Error Condition that applies to a Subscription
Termination

 Choice One of the following error codes.

q OtherError +Error Other error.

 Description 0:1 →ErrorDescription Description of the error in plain text.

any Extensions 0:1 xsd:any* Placeholder for user extensions.

7.3.4.2 SubscriptionTerminatedNotification — Example

The following is an example of a SubscriptionTerminatedNotification message:

<?xml version="1.0" encoding="UTF-8"?>
<!-- (C) Copyright 2005-2014 CEN SIRI -->
<Siri xmlns="http://www.siri.org.uk/siri"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.0"
xsi:schemaLocation="http://www.siri.org.uk/siri../../xsd/siri.xsd">
<SubscriptionTerminatedNotification>
<ResponseTimestamp>2004-12-17T09:30:47-05:00</ResponseTimestamp>
<ProducerRef>KUBRICK</ProducerRef>
<SubscriberRef>NADER</SubscriberRef>
<SubscriptionRef>987653</SubscriptionRef>
<ErrorCondition> <OtherError number="123"></OtherError>
<Description>Weekley restart </Description>
</ErrorCondition>
</SubscriptionTerminatedNotification>
</Siri>

8 Delivering data

8.1 Direct Delivery

8.1.1 Introduction

For Direct Delivery of subscriptions, a ServiceDelivery message is sent by the Producer to the [Consumer]
endpoint of the Consumer for each update of package of updates; see 5.3 on mediation behaviour.

The ServiceDelivery will include one or more delivery messages for a single concrete SIRI Functional
Service as described for each individual service in Part 3. The Consumer may enqueue these messages and
process them as it needs. A Direct Delivery is similar in effect to the last step of Fetched Delivery for a
subscription

8.1.2 Acknowledging Receipt of Data (DataReceivedAcknowledgement)

8.1.2.1 DataReceivedAcknowledgement — Element

If the system supports the SIRI optional ConfirmDelivery capability, and is configured for confirmed delivery,
the consumer shall acknowledge that data has arrived. After receiving all the data, the Consumer will return a
DataReceivedAcknowledgement message to the [GetData] endpoint of the Producer.

http://www.siri.org.uk/siri
http://www.w3.org/2001/XMLSchema-instance
http://www.siri.org.uk/xsd/siri.xsd

FprEN 15531-2:2015 (E)

58

Table 25 — DataReceivedAcknowledgement — Attributes

DataReceivedAcknowledgement +Structure Response from Consumer to Producer to
acknowledge that data has been received. Used
as optional extra step if reliable delivery is
needed. Answers a ServiceDelivery

Log ResponseTimestamp 1:1 xsd:dateTime Time individual response element was created.

Endpoi
nt
proper
ties

ResponderRef 0:1 →ParticipantCode Consumer who is acknowledging the data
delivery.

RequestMessageRef 0:1 →MessageQualifie
r

Reference to a unique identifier associated with
the request which gave rise to this response.

Deleg
ation

DelegatorAddress 0:1 EndpointAddress Address of originated system to which delegated
response is to be returned. +SIRI 2.0.

If request has been proxied by an intermediate
aggregating system this provides tracking
information relating to the original requestor.
This allows the aggregation to be stateless.

DelegatorRef 0:1 →ParticipantCode Identifier of delegating system that originated
message. +SIRI 2.0

Payloa
d

Status 0:1 xsd:boolean Whether data could be processed or not. Default
is true. False if error.

ErrorCondition 0:1 +Structure Error Condition that applies to a
DataReceivedAcknowledgement.

 choice One of the following error codes.

a UnknownSubscripti
onError –1:1

+Error Subscriber not found.

b OtherError +Error Error other than a well-defined category.

 Description 0:1 →ErrorDescription Description of the error in plain text

8.1.2.2 DataReceivedAcknowledgement — Example

The following is an example of a DataReceivedAcknowledgement message:

 <DataReceivedAcknowledgement>
 <ResponseTimestamp>2001-12-17T09:30:47-05:00</ResponseTimestamp>
 <ConsumerRef>NADER</ConsumerRef>
 <RequestMessageRef>012225678</RequestMessageRef>
 <Status>true</Status>
 </DataReceivedAcknowledgement>

8.2 Fetched Delivery

8.2.1 Introduction

Fetched Delivery of subscriptions delivers the data in two steps; a notification from the Producer to the
Consumer; and then a data supply request from the Consumer to the Producer to fetch the data.

If there is a single Subscription Filter, then no message key is needed on the data supply request: the
response will simply include all data for all subscriptions for the subscriber.

If there are multiple Subscription Filters, a ‘NotificationRef’ – the notification message identifier issued by the
Producer – can be used as a message key to identify the specific Channel of the notification on subsequent
steps.

FprEN 15531-2:2015 (E)

59

8.2.2 Signalling Data Availability (DataReadyNotification / DataReadyResponse)

8.2.2.1 Procedure

Once the subscription has been set up and data has become available, the data Consumer is notified of the
existence of updated data via a DataReadyNotification message, sent to the [Notify] endpoint of the
subscription or service request. A message is sent by the Notification Producer for every change to topic data
associated with the subscription that meets the subscription policy. Typically the subscription policy will use
aggregation and change sensitivity mechanisms to reduce the number of notifications sent – see clause on
Mediation earlier. The notification has a return endpoint associated with it.

8.2.2.2 DataReadyNotification— Element

Table 26 — DataReadyNotification — Attributes

DataReadyNotification DataReadyRequest
Structure

Request from Producer to Consumer to notify that
data update is ready to fetch. Answered with a
DataReadyResponse.

Log RequestTimestamp 1:1 xsd:dateTime Creation time of notice of change message.

Endpoi
nt
proper
ties

Address 0:1 EndpointAddress Address to which response is to be sent. This may
also be determined from ProducerRef and
preconfigured data.

ProducerRef 0:1 →ParticipantCode Identifies the Notification Producer.

This element is mandatory for
Publication/Subscription use.

RequestMessageId
entifier

0:1 MessageQualifier Arbitrary unique identifier for this message. Can be
used to reference it subsequently.

Deleg
ation

DelegatorAddress 0:1 EndpointAddress Address of originated system to which delegated
response is to be returned. +SIRI 2.0.

If request has been proxied by an intermediate
aggregating system this provides tracking
information relating to the original requestor. This
allows the aggregation to be stateless.

DelegatorRef 0:1 →ParticipantCode Identifier of delegating system that originated
message. +SIRI 2.0

8.2.2.3 DataReadyNotification — Example

The following is an example of a DataReadyNotification message:

 <DataReadyNotification>
 <RequestTimestamp>2004-12-17T09:30:47-05:00</RequestTimestamp>
 <ProducerRef>KUBRICK</ ProducerRef>
 </DataReadyNotification>

8.2.2.4 DataReadyAcknowledgement— Element

The data Consumer (client) then confirms reception of the notification signal with a
DataReadyAcknowledgement message sent back to the [GetData] endpoint of the notification request. This
message contains a Status element to indicate success or failure in processing the notification.

FprEN 15531-2:2015 (E)

60

Table 27 — DataReadyAcknowledgement — Attributes

DataReadyAcknowledgement DataReadyRespon
seStructure

Response from Consumer to Producer to
acknowledge that data has been received. Used as
optional extra step if reliable delivery is needed.
Answers a ServiceDelivery.

Log ResponseTimestam
p

1:1 xsd:dateTime Time individual data received response element was
created.

Endpoi
nt
proper
ties

ConsumerRef 0:1 →ParticipantCode Consumer who is responding to Data notification.

RequestMessageRef 0:1 →MessageQualifie
r

Reference to identifier of notification message that
this response acknowledges.

Deleg
ation

DelegatorAddress 0:1 EndpointAddress Address of originated system to which delegated
response is to be returned. +SIRI 2.0.

If request has been proxied by an intermediate
aggregating system this provides tracking
information relating to the original requestor. This
allows the aggregation to be stateless.

DelegatorRef 0:1 →ParticipantCode Identifier of delegating system that originated
message. +SIRI 2.0

Payloa
d

Status 0:1 xsd:boolean Whether notification data could be processed or not.
Default is true. False if errors. If false, an error
condition shall be given.

ErrorCondition 0:1 +Structure Error Conditions that apply to a
DataReadyAcknowledgement.

 choice One of the following error codes.

a UnknownSubscri
ptionError –1:1

+Error Subscriber not found.

b OtherError +Error Other error.

 Description 0:1 →ErrorDescription Description of the error in plain text.

8.2.2.5 DataReadyAcknowledgement — Example

The following is an example of a DataReadyAcknowledgement message:

 <DataReadyAcknowledgement>
 <ResponseTimestamp>2004-12-17T09:30:47-05:00</ResponseTimestamp>
 <ConsumerRef>NADER</ConsumerRef>
 <Status>true</Status>
 </DataReadyAcknowledgement>

The data can now be retrieved by the Consumer, acting as a client. If the Consumer does not wish to retrieve
data at this particular moment, retrieval can be postponed to a later time. The polling of updated data is done
subsequently and independently of the initial notification, i.e. the signalling of the fact that a change has taken
place.

8.2.3 Polling Data (DataSupplyRequest/ServiceDelivery)

8.2.3.1 Procedure

Data polling occurs at the initiative of the data Consumer. Only the current real-time information is transmitted
– see discussion of mediation earlier. Historical data is not available.

FprEN 15531-2:2015 (E)

61

Polling generally occurs after updated data is signalled by a DataReadyNotification, but can also occur at
any time after setting up the subscription (the WS-SubPub ‘Get Current Message’ function).

8.2.3.2 DataSupplyRequest Message — Element

To fetch the data, the Consumer sends a DataSupplyRequest message to the [GetData] endpoint of the
Producer, which prompts the Producer to supply the data that has been updated since the last
DataSupplyRequest: The [GetData] endpoint may either be configured, or specified as the return address on
the request.

The data may be; (i) all data for the channel; (ii) all data for a given notification.

Table 28 — DataSupplyRequest — Attributes

DataSupplyRequest +Structure Request from Consumer to Producer to fetch update
previously notified by a Data ready message.
Answered with a Service Delivery.

Log RequestTimestam
p

1:1 xsd:dateTime Time individual data supply request was created.

Auth.

AccountId 0:1 +Structure Account Identifier. May be used to attribute requests to
a specific user account for authentication or reporting
purposes +SIRI v2.0

AccountKey 0:1 +Structure Authentication key for request. May be used to
authenticate the request to ensure the user is a
registered client. +SIRI v2.0

Endpoi
nt
properti
es

Address 0:1 EndpointAddress Address to which response is to be sent. This may also
be determined from RequestorRef and preconfigured
data.

ConsumerRef 0:1 →ParticipantCode Consumer who is requesting data.

This element is mandatory for Publication/Subscription
use.

MessageIdentifier 0:1 MessageQualifier Arbitrary unique identifier for this message. Can be
used to reference it subsequently.

Delegat
ion

DelegatorAddress 0:1 EndpointAddress Address of originated system to which delegated
response is to be returned. +SIRI 2.0.

If request has been proxied by an intermediate
aggregating system this provides tracking information
relating to the original requestor. This allows the
aggregation to be stateless.

DelegatorRef 0:1 →ParticipantCode Identifier of delegating system that originated message.
+SIRI 2.0

Topic NotificationRef 0:1 →MessageQualifier Reference to identifier of notification message that this
response acknowledges. If not specified then data for
all subscriptions for the Consumer will be fetched.

AllData 0:1 xsd:boolean Whether all data is to be returned (Get Current
Message) or just updates since last recorded delivery
date for subscription. Default is false.

If AllData is set to false, then the Producer will transmit only the data that has been updated since the last
request. The read is destructive; that is, it cannot be repeated because once the data has been fetched the
last update flag has been reset. See discussion under mediation for further considerations.

If AllData is set to true, then the Producer will transmit not only the data that has been updated since the last
request, but all data for all active subscriptions held by the Consumer. The read is non-destructive; that is, it

FprEN 15531-2:2015 (E)

62

can be repeated until the data is stale. This corresponds to the WS-PubSub Get Current message. See
discussion under mediation for further considerations.

8.2.3.3 DataSupplyRequest — Example

The following is an example of a DataSupplyRequest message for a single, well known aggregated channel:

 <DataSupplyRequest>
 <RequestTimestamp>2004-12-17T09:30:47-05:00</RequestTimestamp>
 <AllData>false</AllData>
 </DataSupplyRequest>

The following is an example of a DataSupplyRequest message for a referenced notification:

 <DataSupplyRequest>
 <RequestTimestamp>2004-12-17T09:30:47-05:00</RequestTimestamp>
 <ConsumerRef>NADER</ConsumerRef>
 <NotificationRef>2004-12-17T09:30:42-06:00</NotificationRef>
 <AllData>false</AllData>
 </DataSupplyRequest>

8.2.3.4 ServiceDelivery Message

The Notification Producer for the Service responds to the DataSupplyRequest with the data updates,
contained within of a ServiceDelivery message. The ServiceDelivery contains one or more to one or more
delivery messages for a single SIRI Functional service. See 6.2.2 earlier.

8.3 Delegated Delivery +SIRI 2.0

Some configurations wish to proxy client requests from a SIRI consumer via an intermediate aggregating
system, using SIRI messages both between (i) the client consumer and aggregator (as producer), and (ii) the
aggregator (as consumer) and the actual back end producer service. To facilitate this SIRI requests and
responses may be tagged with a DelegatorAddress and a DelegatorRef. These provide tracking information
relating to the original requestor that can be echoed back in service responses and used to delegate
messages back to the original requestor. This allows the aggregation itself to be stateless.

Delegation may give rise to additional error conditions.

9 Recovery from system failure

9.1 Introduction

A SIRI Client, a SIRI Server or the communications link between them may undergo failure, or any
combination thereof. Each of these cases is discussed separately below.

9.2 Recovery after Client Failure

It is the responsibility of the Subscriber to remember the state needed to recreate subscriptions in the event of
a failure by the Notification Producer.

When a Subscriber requests a subscription, it creates its own state to represent the subscription and to allow
it to associate incoming deliveries with its own and/or its Consumer’s data. If the Subscriber loses this state,
for example after a crash of the client machine, all the Subscriber’s subscriptions with the Producer shall be
recreated. The first step is to delete all subscriptions on the Producer (TerminateSubscriptions / All), and
then to create them again.

FprEN 15531-2:2015 (E)

63

9.3 Recovery after Server Failure

If the Notification Producer loses its subscription data, and a heartbeat is available, a significant service failure
will become obvious by the failure to arrive of a heartbeat within the prescribed interval. The recovery action
will be to recreate a new set of subscriptions.

If the Notification Producer loses its subscription data, and a heartbeat is not available, it is not immediately
obvious to the Consumer. There will be an absence of DataReadyNotification messages, but the Consumer
is unable to distinguish this condition from a normal period of quiet operation. In order to detect a service
failure, CheckStatusRequest messages (9.5.2) need to be sent periodically to the Producer. A
CheckStatusResponse (9.5.3) should be returned by the Producer, specifying the time stamp of the service
start. If the start of the service is after the time at which the Consumer requested the subscription to be set up,
loss of the subscription shall be assumed. The recovery procedure is now as for client data loss – delete and
recreate all subscriptions.

9.4 Reset after Interruption of Communication

A break in the data connection can be determined by the requestor from the timeout of the HTTP protocol.
The effect will be a failure for a message to reach its recipient. If the message is the response to a request,
the absence of a response can generally be detected with a timeout.

The currently recognised failure conditions are shown in Table 29.

Table 29 — Error Statuses and Actions in Communication Failure Conditions

Lost message Lost on way
to

Failure Condition Detection Recovery action

SubscriptionR
equest

Producer Failed to receive
subscription

Subscriber
received no
reply

Subscriber resends request again.

SubscriptionR
eply

Subscriber Failed to inform of new
subscription

Subscriber resends request with same
reference. Subscription is overwritten.

DataReadyNot
ification

Consumer Failed to receive
notification.

Producer
received no
reply

Producer sends notification again.

DataReadyRe
sponse

Producer Failed to acknowledge
notification.

Resend of the request, until reply is
received from the client, or a timeout.

DataSupplyRe
quest

Producer Failed to receive supply
request.

Consumer
receives no
data supply
reply

Consumer shall assume the request has
been lost (worst case) and request all
data again (DataSupplyAll).

DataDelivery Consumer Failed to receive data
response.

Data lost, renewed polling not possible
because the server has reset the update
flag of the subscription, i.e. further
updates have been detected. Consumer
shall make a new DataSupplyAll request.
GetCurrentMessage.

TerminateSub
scriptionRequ
est

Producer Failed to receive
subscription termination.

Subscriber
received no
reply

Subscriber retransmits message until it
receives a reply, or there is an error
message concerning an unknown
Subscription Identifier or there is a
timeout. TerminateSub

scriptionResp
onse

Consumer Failed to receive
subscription termination
reply.

CheckStatusR
equest

Producer Failed to receive status
request.

Consumer
received no
reply

Sender retransmits up to timeout, after
which it assumes Service is no longer
available.

FprEN 15531-2:2015 (E)

64

Lost message Lost on way
to

Failure Condition Detection Recovery action

CheckStatusR
esponse

Consumer Failed to receive status
response.

Sender retransmits. Producer responds
again up to timeout, after which it
assumes Service is no longer available.

9.5 Alive Handling

9.5.1 Introduction

Status polling is used to monitor the availability of the SIRI functional services. This can either be on demand
Status Check, or an automatic Heartbeat.

9.5.2 CheckStatusRequest

9.5.2.1 CheckStatusRequest Message — Element

If the client wishes to establish whether the service is still “alive”, it sends a CheckStatusRequest to the
server and waits for the reply (CheckStatusResponse). The message is sent to the [CheckStatus] endpoint
for the SIRI functional service.

The CheckStatus message shall always be implemented.

The CheckStatusRequest also enables the client to detect whether a service has been started again, and
that the subscriptions have been lost. Within CheckStatusRequest the server specifies the last start time of
the service (ServiceStartedTimestamp). A start time after the set-up of a subscription indicates that it has
been restarted at some point in between (9.3).

Table 30 — CheckStatusRequest — Attributes

CheckStatusRequest +Structure Request from Consumer to Producer to inform
it of current system status. The Endpoint
address to which request is sent determines
which service is checked.

Attribute
s

version 0:1 VersionString Version Identifier of Functional Service, e.g.
‘1.0c’.

Log RequestTimesta
mp

1:1 xsd:dateTime Time of request.

Auth.

AccountId 0:1 +Structure Account Identifier. May be used to attribute
requests to a specific user ACCOUNT for
authentication or reporting purposes +SIRI v2.0

Note that an ACCOUNT may be shared
between more than one consumer device, for
example if used to authenticate an application.

AccountKey 0:1 +Structure Authentication key for request. May be used to
authenticate the request to ensure the user is a
registered and approved client. +SIRI v2.0.

Endpoin
t

Address 0:1 EndpointAddress Address to which response is to be sent

RequestorRef 1:1 →ParticipantCode. Identifier of requestor – Participant Code.

Identity MessageIdentifier 0:1 MessageQualifier Arbitrary unique identifier for this message. Can
be used to reference it subsequently.

Delegat
or
endpoin

DelegatorAddres
s

0:1 EndpointAddress Address of originated system to which
delegated response is to be returned. +SIRI
2.0.

FprEN 15531-2:2015 (E)

65

t If request has been proxied by an intermediate
aggregating system this provides tracking
information relating to the original requestor.
This allows the aggregation to be stateless.

DelegatorRef 0:1 →ParticipantCode Identifier of delegating system that originated
message. +SIRI 2.0

any Extensions 0:1 xsd:any* Placeholder for user extensions.

9.5.2.2 CheckStatusRequest — Example

The following is an example of a CheckStatusRequest message:

 <CheckStatusRequest>
 <RequestTimestamp>2004-12-17T09:30:47-05:00</RequestTimestamp>
 <RequestorRef>NADER</RequestorRef>
 </CheckStatusRequest>

9.5.3 CheckStatusResponse

9.5.3.1 CheckStatusResponse Message — Element

Table 31 — CheckStatusResponse — Attributes

CheckStatusResponse +Structure Response from Producer to Consumer to inform
whether services is working. Answers a previous
CheckStatusRequest.

Log ResponseTimestamp 1:1 xsd:dateTime: Time of Response.

Endp
oint

ResponderRef 0:1 →ParticipantCode Identifies the Producer or Service whose status is
being checked.

RequestMessageRef 0:1 MessageQualifier Reference to identifier of check status message
that this response acknowledges.

Deleg
ator

DelegatorAddress 0:1 EndpointAddress Address of originated system to which delegated
response is to be returned. +SIRI 2.0.

If request has been proxied by an intermediate
aggregating system this provides tracking
information relating to the original requestor. This
allows the aggregation to be stateless.

DelegatorRef 0:1 →ParticipantCode Identifier of delegating system that originated
message. +SIRI 2.0

Paylo
ad

Status 0:1 xsd boolean Whether the service is available. False if not
available. Default is true.

DataReady 0:1 xsd boolean Whether data delivery is ready to be fetched +SIRI
v2.0

ErrorCondition 0:1 +Structure Error Condition that applies to a
CheckStatusResponse.

 Choice One of the following error codes.

a ServiceNotAvailableError
–
1:1

+Error Service is not available.

b UnknownSubscriberError +Error Subscriber is not known.

c OtherError +Error Other error.

 Description 0:1 →ErrorDescription Description of the error in plain text.

ValidUntil 0:1 xsd:dateTime: End of data horizon of the data producer.

FprEN 15531-2:2015 (E)

66

ShortestPossibleCycle 0:1 PositiveDurationType Minimum separation between two updates.

ServiceStartedTime 0:1 xsd:dateTime: Specifies the time of the start of the service. If the
service is not available to deliver data, No value
should be given here.

any Extensions 0:1 xsd:any* Placeholder for user extensions.

The CheckStatusResponse indicates the availability of the SIRI Functional Service. If the System is
completely unavailable there will be no reply. The CheckStatusResponse also provides status information
that can be used to establish if there has been an outage. If the Service started time is later than the creation
time for the subscription, then it is likely the subscriptions are not current and that the data set of the
Consumer may be incomplete.

The CheckStatusResponse is sent to the [ReportStatus] endpoint indicated by the request. The
CheckStatusResponse describes the total availability of all information channels of a service, i.e. messages
sent to any endpoint, and shall return false if any endpoint is not working. If a single channel is unavailable,
the entire service is no longer considered available, i.e. both data supply, subscription management and shall
be unavailable.

9.5.3.2 CheckStatusResponse — Example

The following is an example of a CheckStatusResponse message:

 <CheckStatusResponse>
 <ResponseTimestamp>2001-12-17T09:30:47-05:00</ResponseTimestamp>
 <Status>true</Status>
 <ValidUntil>2004-12-17T19:30:47-05:00</ValidUntil>
 <ShortestPossibleCycle>PT2M</ShortestPossibleCycle>
 <ServiceStartedTimeStamp>2004-12-17T09:30:47-
05:00</ServiceStartedTimeStamp>
 </CheckStatusResponse>

9.5.4 HeartbeatNotification

9.5.4.1 Heartbeat Message — Element

Table 32 — HeartbeatNotification — Attributes

HeartbeatNotification +Structure Response from Producer to Consumer to inform if
service is working. Sent at regular intervals.

Log RequestTimestamp 1:1 xsd:dateTime: Time of Heartbeat Notification.

Endp
oint

Address 0:1 EndpointAddress Address to which any life sign response is to be
sent. Not currently used, left in for in uniformity.

ProducerRef 0:1 →ParticipantCode Identifies the Notification Producer or Service
whose status is being checked.

MessageIdentifier 0:1 MessageQualifier Arbitrary unique reference to this message.

Deleg
ation

DelegatorAddress 0:1 EndpointAddress Address of originated system to which delegated
response is to be returned. +SIRI 2.0.

If request has been proxied by an intermediate
aggregating system this provides tracking
information relating to the original requestor. This
allows the aggregation to be stateless.

DelegatorRef 0:1 →ParticipantCode Identifier of delegating system that originated
message. +SIRI 2.0

FprEN 15531-2:2015 (E)

67

Paylo
ad

Status 0:1 xsd:boolean Whether the service is available. False if not
available. Default is true.

ErrorCondition 0:1 +Structure Error Conditions that apply to a
HeartbeatNotification. One of the following:

 choice One of the following error codes.

a ServiceNotAvailab
leError –1:1

+Error Service is not available.

b OtherError +Error Other error.

 Description 0:1 →ErrorDescription Description of the error in plain text.

ValidUntil 0:1 xsd:dateTime: End of data horizon of the data producer.

ShortestPossibleCycle 0:1 PositiveDurationType Minimum separation between two updates.

ServiceStartedTime 0:1 xsd:dateTime: Specifies the time of the start of the service.

any Extensions 0:1 xsd:any* Placeholder for user extensions.

The HeartbeatNotification message reports the availability of the SIRI Functional Service at regular intervals.
It is an optional SIRI capability.

A heartbeat is sent if configured as a system feature; at the preconfigured heartbeat interval. A single
heartbeat message is sent for each subscriber channel; if the consumer has many subscriptions, it will still get
only one heartbeat.

If the System is completely unavailable there will be no heartbeat. The HeartbeatNotification message
content is similar to that of CheckStatusResponse, and is also sent to the [ReportStatus] endpoint of the
Consumer. If the Service started time is later than the creation time for the subscription, then it is likely the
subscriptions are not current and that the data set of the Consumer may be incomplete.

9.5.4.2 HeartbeatNotification — Example

The following is an example of a HeartbeatNotification message:

 <HeartbeatNotification>
 <RequestTimestamp>2001-12-17T09:30:47-05:00</RequestTimestamp >
 <ProducerRef>KUBRICK</ProducerRef>
 <Status>true</Status>
 <ValidUntil>2004-12-17T19:30:47-05:00</ValidUntil>
 <ServiceStartedTimeStamp>2004-12-17T09:30:47-
05:00</ServiceStartedTimeStamp>
 </ HeartbeatNotification>

9.6 Additional Failure modes for delegated delivery (+SIRI v2.0)

If an intermediate aggregator is being used to forward messages, additional modes of failure may arise. For
example, if the aggregator is unable to deliver a message to the original requestor because the endpoint is
invalid, unauthorised or not available. These can be reported with UnknownParticipant,
EndpointDeniedAccessError or EndpointNotAvailableAccessError Error conditions.

FprEN 15531-2:2015 (E)

68

10 Transport of SIRI messages

10.1 Separation of Addressing from Transport Protocol

WS-PubSub requires that the message transport be independent of the binding to the XML used to serialise
functional service content. This separation of concerns allows different communication transport methods to
be used, and also permits different middleware to be used for queuing and dequeuing messages.

In particular it should be possible to encode the endpoint references used to specify the Web Addresses (that
is, URIs and ports) of communicating systems in different ways for different transport protocols. This requires
identification and encoding of the different logical endpoints needed for different types of SIRI messages.

The normal way of exchanging SIRI XML messages is via HTTP using the POST method, with an XML
document containing the SIRI encoded message as a simple attachment. Messages may also be exchanged
by other means, for example within a SOAP envelope.

SIRI allows two different capability levels for endpoint addressing:

Implicit Addressing – the endpoint addresses are not exchanged within the SIRI API. The initial endpoint
addresses of the service are supplied as part of the configuration. The return address to which the Functional
Service should send responses is taken from the http request, i.e. is bound into the transport protocol. Both
responses and subscriptions are sent to the same address of the requestor.

Explicit Addressing – return addresses may be specified as part of the request, allowing protocol
independent access to the full endpoint properties. If desired, different addresses can be specified for both
Consumer and Subscriber. The Functional Service address can be returned by the Universal Discovery
Service.

10.2 Logical Endpoint Addresses

10.2.1 Endpoint Addresses

For each different SIRI Functional Service, SIRI identifies different Logical Service endpoints, which may be
distinct addresses, or all be mapped to the same concrete URI. Table 35 shows the endpoints for server
functions. These addresses can be configured in the ServiceRequestContext.

Table 33 — Server Logical Endpoints

Server Logical
Endpoint Name

Messages sent to endpoint Description

[CheckStatus] CheckStatusRequest Address to which send requests to check that the Functional
Service is available.

[Subscribe] SubscriptionRequest Address to which send requests for new subscriptions to the
Functional Service.

[ManageSubscript
ions]

TerminateSubscription Address to which send requests to change or delete
subscriptions to the Functional Service. Normally the same
as Subscribe.

[GetData] DataReadyResponse Address to which send requests to fetch data, and
confirmation of successful receipt.

DataSupplyRequest

DataReceivedAcknowledgement

Table 36 shows the endpoints to access client functions, that is, the addresses to which different types of
responses to client requests will be sent. If not explicitly specified, the response address may be taken from
the http request.

FprEN 15531-2:2015 (E)

69

Table 34 — Client Logical Endpoints

Client Logical
Endpoint Name

Messages sent to endpoint Description

[ReportStatus] CheckStatusResponse Address to which send responses to inform the Consumer
that the Functional Service is available.

HeartBeat

[Subscriber] SubscriptionResponse Address to which send responses to requests to create,
change or delete subscriptions.

TerminateSubscriptionResponse

[Notify] DataReadyNotification Address to which send notifications of data being ready.

[Consumer] ServiceDelivery Address to which send data.

10.2.2 Endpoint Address — Examples

The following subscription request for the Stop Monitoring service includes an explicit endpoint address of; (i)
the [Subscriber] making the request (Address element, ‘http://myhost:8080/nader/dpi/subscription.xml’) to
whom the subscription response should be sent to confirm that the subscription has been successfully
created, and; (ii) the [Consumer] to whom the Stop Monitoring notification and data messages should be
despatched (ConsumerAddress element, ‘http://myhost:8080/nader/dpi/dataready.xml’).

The request is sent to the [Subscriber] endpoint address configured for the Producer, for example,
‘http://yourhost:8080/KUBRICK/dpi/subscription.xml’.

 <SubscriptionRequest>
 <RequestTimestamp>2004-12-17T09:30:47-05:00</RequestTimestamp>
 <Address>http://myhost:8080/nader/dpi/subscription.xml</Address>
 <RequestorRef>NADER</RequestorRef>

 <ConsumerAddress>http://myhost:8080/nader/dpi/dataready.xml</ConsumerAddress>
 <StopMonitoringSubscriptionRequest>
 <SubscriberRef>NADER</SubscriberRef>
 <SubscriptionIdentifier>000234</SubscriptionIdentifier>
 <InitialTerminationTime>2004-12-17T09:30:47-
05:00</InitialTerminationTime>
 <StopMonitoringRequest version=“1.0">
 <RequestTimestamp>2004-12-17T15:30:47-05:00</RequestTimestamp>
 <MonitoringRef>POIT5678</MonitoringRef>
 </StopMonitoringRequest>
 </StopMonitoringSubscriptionRequest>
 </SubscriptionRequest>

If the same subscription was submitted without explicit addresses, the values for the [Subscriber] and
[Consumer] endpoints would instead be taken from the preconfigured values for the requestor participant as in
Table 35.

FprEN 15531-2:2015 (E)

70

Table 35 — Client Logical Endpoints

Client Logical
Endpoint Name

Messages sent to endpoint Default Response Endpoint Address.

[ReportStatus] CheckStatusResponse http request.

HeartBeat Configured Participant Consumer Address.

[Subscriber] SubscriptionResponse Configured Participant Subscriber Address.

TerminateSubscriptionResponse Configured Participant Subscriber Address.

[Notify] DataReadyNotification Configured Participant Consumer Address.

[Consumer] ServiceDelivery Configured Participant Consumer Address.

The following is an example of a SubscriptionRequest message:

 <SubscriptionRequest>
 <RequestTimestamp>2004-12-17T09:30:47-05:00</RequestTimestamp>
 <RequestorRef>NADER</RequestorRef>
 <StopMonitoringSubscriptionRequest>
 <SubscriberRef>NADER</SubscriberRef>
 <SubscriptionIdentifier>000234</SubscriptionIdentifier>
 <InitialTerminationTime>2004-12-17T09:30:47-
05:00</InitialTerminationTime>
 <StopMonitoringRequest version="0.1e">
 <RequestTimestamp>2004-12-17T15:30:47-05:00</RequestTimestamp>
 <MonitoringRef>POIT5678</MonitoringRef>
 </StopMonitoringRequest>
 </StopMonitoringSubscriptionRequest>
 </SubscriptionRequest>

10.3 Parallelism and Endpoint Addresses

The use of distinct endpoints for different functions allows for a degree of parallelism in implementations:
status, subscription and data conversations between participants pair may be conducted simultaneously by
different processes. The use of parallel processes does however open the possibility of conflict or race
conditions between the different threads: for example a consumer may still be trying to fetch data for a
subscription that is in the process of being cancelled. A strict precedence should be followed to resolve
conflict, as follows:

1) Status: the status applies to all processes. If a system becomes unavailable, other conversations should
cease.

2) Subscription: if a subscription is terminated, its data processing should cease – any attempt to access
data will result in an error.

3) Data Supply: should yield to the higher priority.

10.4 Encoding of XML messages

10.4.1 Principles

Consistent conventions are used in the XML for all SIRI services. The following principles are applied to the
encoding of SIRI XML messages:

— Use elements for everything except metadata,

FprEN 15531-2:2015 (E)

71

— Use structures for all significant elements,

— Modularise into a subschema for each service,

— Use Upper CamelCase for Element names,

— Use lower camelCase for attributes and Enumerated values,

— Use a wrapper element for ‘one-to-many’ relationships,

— Use standard simple types, from XML, other standards and the SIRI type packages,

— Use enumeration rather than choice of tags for lists of options,

— Annotate all elements,

— Use consistent conventions for nouns in names e.g. time versus interval,

— Use names consistently;

10.4.2 Encoding of Errors in XML

Each different error condition is represented by an explicit subtype of a common abstract error type. The
relevant error codes are explicitly enumerated on responses.

10.4.3 Character Set

UTF-8 is recommended.

10.4.4 Schema Packages

The SIRI schema is modularised into separate packages, with a strictly linear dependency graph. The
packages effectively fall into three groups.

1. The SIRI terminal schemas: The (Siri.xsd) Schema is a convenience artefact that provides an entry point
to all SIRI messages. It uses XML choice elements to give an explicit binding. An alternative terminal
schema (SiriSG.xsd) is provided (+SIRI v1.3) that is syntactically identical but uses substitution groups
and so can be used for arbitrary extension with additional functional services (as say by NeTEx).

2. SIRI Functional Service packages: for each SIRI Functional Service (SIRI-SM, SIRI-VM, etc.) there is a
separate subschema package containing all request and responses, including capabilities for the service.

3. Common shared definitions: There are a number of small subschemas providing base type definitions
and shared entities.

FprEN 15531-2:2015 (E)

72

Figure 21 — SIRI Schema Packages

10.4.5 Siri.XSD – Use of XML Choice

Figure 22 shows an extract from the fixed SIRI schema showing the use of an explicitly coded XML choice to
group the possible SIRI requests. Additional functional request types require a coded schema change.

FprEN 15531-2:2015 (E)

73

Figure 22 — Example for XML choice

FprEN 15531-2:2015 (E)

74

10.4.6 SiriSG.XSD – Use of XML Substitution groups

Figure 23 shows the alternative loosely coupled SIRI schema which makes use of substitution groups.
Additional functional request types may be added simply by including additional subschemas with additional
request of the correct type.

FprEN 15531-2:2015 (E)

75

Figure 23 — Example: XML Substitution groups

FprEN 15531-2:2015 (E)

76

10.5 Use of SIRI with SOAP / WSDL

10.5.1 Introduction

SIRI messages may also be exchanged wrapped within a SOAP envelope. The SIRI XML set includes
example client and server WSDL bindings. This clause provides some discussion of the SIRI SOAP binding.

10.5.2 Web Services

10.5.2.1 General

Web Services are programmable applications made accessible using standard Internet protocols like HTTP,
XML and SOAP. Like other software components, Web Services represent black-box functionality that can be
reused without knowing in detail how the service is implemented. Web services therefore provide a ready
solution for intersystem communication over an Internet/Intranet network, and are a good way of implementing
the SIRI transport and communication layer, combining the best aspects of component based development
and internet based communication.

Other points to note about Web Services:

— Can work through existing proxies and firewalls,

— Can take advantage of HTTP authentication,

— Can use SSL encryption without any modification,

— Can be incorporated easily with existing XML messaging solutions,

— Can take advantage of XML messaging schemas and offer an easy transition from XML RPC solutions,

— Are not subject to conflict between proprietary component based solutions, like say CORBA and COM,

— Are platform independent and available for a wide variety of clients;

10.5.2.2 SOAP (Simple Object Access Protocol)

Simple Object Access Protocol (SOAP) is a communication protocol specification that defines a uniform way
of exchanging XML-encoded data over the internet as messages. SOAP provides a way to communicate
between applications running on different operating systems, with different technologies and programming
languages. It also defines a way to perform remote procedure calls (RPCs) using HTTP as the underlying
communication protocol.

Other points about SOAP are:

— SOAP is platform independent,

— SOAP is programming language independent,

— SOAP is simple and extensible,

— SOAP provides a way to traverse firewalls,

— SOAP is being developed as a W3C standard;

FprEN 15531-2:2015 (E)

77

10.5.2.3 WSDL (Web Services Definition Language)

Web Services Description Language (WSDL) is used to describe an application encapsulated as a Web
Service according to a standard schema that makes it easy for new bindings to be added to use the
application. A WSDL binding is written as an XML document that specifies the location of the service and the
operations (or methods) the service exposes. WSDL definitions can also be used to build discovery services

WSDL provides a way for service providers to describe the basic format of web service requests over different
protocols or encodings. In WSDL the abstract definition of endpoints and messages is separated from their
concrete network deployment or data format bindings. This allows the reuse of abstract definitions of
messages, which are abstract descriptions of the data being exchanged, and port types, which are abstract
collections of operations. The SIRI WSDL implementation provides three compatible WSDL bindings: two with
WSDL 1.1 encoding styles, RPC Literal and Document Literal wrapped (+SIRI v2.0), and one WSDL 2.0. All
three use an HTTP transport.

A WSDL 1.1 document uses the following elements in the definition of network services:

— Types – a container for data type definitions using some type system (such as XSD),

— Message – an abstract, typed definition of the data being communicated,

— Operation – an abstract description of an action supported by the service,

— Port Type – an abstract set of operations supported by one or more endpoints,

— Binding – a concrete protocol and data format specification for a particular port type,

— Port – a single endpoint defined as a combination of a binding and a network address,

— Service – a collection of related endpoints;

The SIRI WSDL 1.1 interfaces follow the WS-I Basic Profile, which is a specification from the Web Services
Interoperability industry consortium (WS-I, which recently became part of OASIS, providing guidelines and
tests for interoperability of Web Services specifications such as SOAP, WSDL, and UDDI). The Version 2.0 of
WS-I Basic Profile and corresponding testing tools were used for SIRI.

The WSDL 2.0 standard (formerly called WSDL 1.2 but later renamed WSDL 2.0 because of its substantial
differences from WSDL 1.1) was designed to overcome interoperability issues from WSDL 1.x. However few
vendors are supporting WSDL 2.0 today, but since SIRI is planned to be a long lasting standard, support for a
SIRI WSDL 2.0 interface is also provided;

The main changes in WSDL 2.0 are:

— Addition of new semantics to the description language, including a new component model, making it
easier to reuse components.

— Removal of the message constructs: WSDL 1.x messages are now specified using the XML schema type
system in the types element allowing richer set of message exchange patterns.

— PortTypes renamed to interfaces.

— Ports renamed to endpoints.

— Support for interface inheritance.

The WSDL 2.0 specification offers better support for RESTful web services, and is much simpler to
implement. However support for this specification is still poor in software development kits for Web Services

FprEN 15531-2:2015 (E)

78

which often offer tools only for WSDL 1.1. As it is intended to solve main interoperability issues, there is no
WS-I profile for WSDL 2.0

Figure 24 — WSDL 1.1 and 2.0 main concepts (source http://en.wikipedia.org/wiki/File:WSDL_11vs20.png)

10.5.3 Use of SOAP

SOAP over HTTP is widely used for intersystem communications and services in the area of business
applications and standards and is a candidate of choice for Web Services.

The widespread use of SOAP has been accompanied by extensive tool development to support implanting
with SOAP, for example, XML parsers, and automated source code generation services from a WSDL file.
This greatly assists the development and implementation of SIRI over SOAP.

The SOAP basic mechanism is quite simple: a call is made to a remote service, passing along any necessary
parameters, and the answer is sent back to the caller (in some cases, a one-way request is used, meaning
that no answer will be provided). The SOAP stack serializes the request's parameters into XML, moves the
data to the destination using a transport protocol such as HTTP, receives the response, deserializes the
response back into objects, and returns the results to the calling method. SOAP tools handle all the encoding
and decoding, even for very complex data types, and bind to the remote object automatically.

10.5.4 SIRI WSDL

10.5.4.1 SIRI WSDL Definition

The SIRI XML set includes three different sets of client and server WSDL bindings, using the two most widely
used SOAP encoding styles: RPC/Literal and Document/Literal for WSDL 1.0; and an additional version for
WSDL 2.0. Several different mappings into WSDL of the SIRI schema are potentially possible. In addition
there are several different approaches to using SOAP. SIRI therefore sets specific reference bindings: it is
important to note that a special care was focused on ensuring compatibility and interoperability between all the
SIRI WSDL variants (meaning that a RPC/Literal based client can request a Document/literal based producer,
a Document/literal based client can request a WSDL 2.0 based producer, or any other combination).

10.5.4.2 WSDL 1.1 encoding styles

In WSDL the binding describes the protocol and data format specification to be used. A WSDL 1.1 SOAP
binding can be either a Remote Procedure Call (RPC) style binding or a Document style binding. The binding
also describes an encoded or literal data format. This gives four possible models:

— RPC/Encoded;

— RPC/Literal;

http://en.wikipedia.org/wiki/File:WSDL_11vs20.png

FprEN 15531-2:2015 (E)

79

— Document/Encoded;

— Document/Literal.

An additional variant, commonly called the 'Document/Literal Wrapped' pattern (actually a refinement pattern
of Document/Literal, being mainly a coding style, rather than a new model), tries to bring together the
advantages of both RPC/Literal and Document/Literal), giving a total of five binding styles available for a given
WSDL file.

NOTE For more information on SOAP and WSDL, please refer to the numerous external sources available (web,
books, etc.).

SIRI provides two fully compatible and interoperable WSDL variants: a RPC/Literal variant, and a second one,
added with SIRI v2.0, that is a Document/Literal Wrapped on SOAP and WSDL variant. This choice was made
for the following reasons;

— These are the two most widely used encoding styles;

— It is possible to have the RPC/Literal style interoperable with a Document/Literal Wrapped style;

— The approach is fully compliant with SIRI v1.0;

— The approach is compliant with the WS-I (Web Service Interoperability Organization) Basic Profile
(Version 2.0).

All SIRI WSDL 1.1 variants are WS-I (Web Service Interoperability Organization) compliant and have been
successfully tested against the Basic Profile (Version 2.0).

10.5.5 SIRI WSDL structure

The SIRI WSDL provides a single access point for each SIRI service, plus an additional generic access to any
SIRI service (+SIRI v2.0). Every functional service access point is named GetXXX where XXX is the name of
the SIRI service. Communication management services (subscription, heart beat and check status) don't have
the Get prefix. The notification services are named NotifyXXX. In addition, the two main delivery services are
available (Stop and Line Delivery).

Table 36 — SIRI Producer functional services

Service Name Notes

GetProductionTimetable Request for daily production timetables based on ProductionTimetableRequestStructure.

GetEstimatedTimetable Line centric request for information about Stop Visits, i.e. arrival and departure at a stop. Based on
EstimatedTimetableRequestStructure.

GetStopTimetable Request for information about the estimated timetable, based on the
StopTimetableRequestStructure.

GetStopMonitoring Stop centric request for information about Stop Visits, i.e. arrivals and departures at a stop, based
on the StopMonitoringRequestStructure.

GetMultipleStopMonitoring Similar to GetStopMonitoring but for multiple stops.

Deprecated from Siri 2.0 (use GetSiriService instead).

GetVehicleMonitoring Request for information about Vehicle Movements. Based on the
VehicleMonitoringRequestStructure.

GetConnectionTimetable Request for information about timetabled connections at a stop. Based on the
ConnectionTimetableRequestStructure.

FprEN 15531-2:2015 (E)

80

GetConnectionMonitoring Request for information about changes to connections at a stop for Connection Monitoring service.
Based on the ConnectionMonitoringRequestStructure.

GetGeneralMessage Request for information about general information messages affecting stops, vehicles or services;
Based on the GeneralMessageRequestStructure.

GetFacilityMonitoring Request for information about Facilities status. Based on the
FacilityMonitoringRequestStructure.

GetSituationExchange Request for information about Facilities status. Based on the
SituationExchangeRequestStructure.

GetSiriService Request to any Siri service. Based on the ServiceRequestStructure.

Table 37 — SIRI Producer communication management and utility services

Service Name Notes

Subscribe Request from Subscriber to Producer for a subscription. Based on the
SubscriptionRequestStructure.

DeleteSubscription Request from Subscriber to Subscription Manager to terminate a subscription. Based on the
TerminateSubscriptionRequestStructure.

DataSupply Request from Consumer to Producer to fetch update previously notified by a Data ready message.
Based on the DataSupplyRequestStructure.

CheckStatus Request from Consumer to Producer to check whether services is working. Based on the
CheckStatusRequestStructure.

GetCapabilities Requests the current capabilities of the server. Based on the CapabilitiesRequestStructure.

StopPointsDiscovery Requests for stop reference data for use in service requests. Based on the
StopPointsDiscoveryRequestStructure.

LinesDiscovery Requests for line data for use in service requests. Based on the LinesDiscoveryRequestStructure.

ConnectionLinkDisco
very

Requests for connection data for use in service requests. Based on the
ConnectionLinkDiscoveryRequestStructure.

Table 38 — SIRI Consumer notification

Service Name Notes

NotifyDataReady Request from Producer to Consumer to notify that data update is ready to fetch.

NotifyHeartbeat Notification from Producer to Consumer to indicate that the service is running normally.

NotifyProductionTimetable Notification from Producer to Consumer of updated ProductionTimetable data.

NotifyEstimatedTimetable Notification from Producer to Consumer of updated EstimatedTimetable data.

NotifyStopTimetable Notification from Producer to Consumer of updated StopTimetable data.

NotifyStopMonitoring Notification from Producer to Consumer of updated StopMonitoring data.

NotifyVehicleMonitoring Notification from Producer to Consumer of updated VehicleMonitoring data.

NotifyConnectionTimetable Notification from Producer to Consumer of updated ConnectionTimetable data.

NotifyConnectionMonitoring Notification from Producer to Consumer of updated ConnectionMonitoring data.

NotifyGeneralMessage Notification from Producer to Consumer of updated GeneralMessage data.

NotifyFacilityMonitoring Notification from Producer to Consumer of updated FacilityMonitoring data.

NotifySituationExchange Notification from Producer to Consumer of updated SituationExchange data.

It should be noted that the SOAP Fault defined in SIRI 1.0 is still available, but its usage is now deprecated
(+SIRI v2.0). SIRI error mechanism has to be used instead.

The following figure provides an overview of the producer WSDL (at this level there is nearly no difference
between the RPC/Literal, Document/Literal and WSDL 2.0 variants). The figure displays:

FprEN 15531-2:2015 (E)

81

— Port Type (named Interface in WSDL 2.0) on the left –an abstract set of operations supported by one or
more endpoints;

— Binding in the middle – a concrete protocol and data format specification for a particular port type;

— Service on the right – a collection of related endpoints.

Figure 25 — SIRI SOAP Producer Document/Literal WSDL

The following figure provides an overview of the consumer WSDL.

Figure 26 — SIRI SOAP Consumer RPC/Literal WSDL

10.5.6 SIRI RPC WSDL

10.5.6.1 General

The SIRI RPC/Literal WSDL is built directly from types defined in the main XSD file (Siri.xsd): there are no
specific extensions for this WSDL definition.

Two SIRI WSDL files are defined, one for the Producer server side, implementing all the supported Producer
operations; and one for the Subscriber and Consumer side, implementing all the client notification operations.

Most of the operations have three message parameters: input, output and fault. The output parameter is not
needed for notification messages (usage of SOAP fault is now deprecated from SIRI 2.0).

FprEN 15531-2:2015 (E)

82

Input and output messages have three parts: a generic header (info), the main input or output payload that is
specific to the SIRI functional message type, and an extension. The extension is designed to handle
parameters which are outside of the scope of SIRI but which may be needed for a specific implementation.

The SIRI RPC WSDL variants were available from SIRI 1.0 and are named siri_wsProducer.wsdl for the
producer operations, and siri_wsConsumer.wsdl for the client operations.

10.5.6.2 WSDL RPC Example: StopTimetable Service

The following figure provides a detailed view of the WSDL for the StopTimetable service.

Figure 27 — SIRI SOAP WSDL GetStopTimetable detail

10.5.6.3 SOAP Example: Monitoring Service

The following code fragments provide an example of the application of WSDL for the StopMonitoring service.

Table 39 — SOAP Example: GetStopMonitoring request

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:siri="http://www.siri.org.uk/siri">
 <SOAP-ENV:Body>
 <GetStopMonitoring xmlns:m="http://wsdl.siri.org.uk/siri">
 <ServiceRequestInfo xmlns="">
 <siri:RequestTimestamp>2010-05-
05T09:17:06.625+02:00</siri:RequestTimestamp>

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.siri.org.uk/siri
http://wsdl.siri.org.uk/siri

FprEN 15531-2:2015 (E)

83

 <siri:RequestorRef>CLI_DRYADE</siri:RequestorRef>

 <siri:MessageIdentifier>StopMonitoringClient:Test:0</siri:MessageIdentifier>
 </ServiceRequestInfo>
 <Request version="1.3" xmlns="">
 <siri:RequestTimestamp>2010-05-
05T09:17:06.625+02:00</siri:RequestTimestamp>

 <siri:MessageIdentifier>StopMonitoringClient:Test:0</siri:MessageIdentifier>
 <siri:StartTime>2010-05-05T10:05:00.000+02:00</siri:StartTime>

 <siri:MonitoringRef>DRYADE:StopPoint:BP:15574346:LOC</siri:MonitoringRef>
 <siri:MaximumStopVisits>5</siri:MaximumStopVisits>
 <siri:MaximumNumberOfCalls>
 <siri:Onwards>3</siri:Onwards>
 </siri:MaximumNumberOfCalls>
 </Request>
 <RequestExtension xmlns=""/>
 </GetStopMonitoring>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Table 40 — SOAP Example Message: GetStopMonitoring Answer

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:m0="http://www.siri.org.uk/siri">
 <SOAP-ENV:Body>
 <wsdl:GetStopMonitoringResponse xmlns:wsdl="http://wsdl.siri.org.uk"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <ServiceDeliveryInfo>
 <siri:ResponseTimestamp
xmlns:siri="http://www.siri.org.uk/siri">2010-05-
05T09:17:07.657+02:00</siri:ResponseTimestamp>
 <siri:ProducerRef
xmlns:siri="http://www.siri.org.uk/siri">DRYADE</siri:ProducerRef>
 <siri:Address
xmlns:siri="http://www.siri.org.uk/siri">http://localhost:8080/SiriServer</siri:A
ddress>
 <siri:ResponseMessageIdentifier
xmlns:siri="http://www.siri.org.uk/siri">13319</siri:ResponseMessageIdentifier>
 <siri:RequestMessageRef
xmlns:siri="http://www.siri.org.uk/siri">StopMonitoringClient:Test:0</siri:Reques
tMessageRef>
 </ServiceDeliveryInfo>
 <Answer>
 <siri:StopMonitoringDelivery version="1.3"
xmlns:siri="http://www.siri.org.uk/siri">
 <siri:ResponseTimestamp>2010-05-
05T09:17:07.657+02:00</siri:ResponseTimestamp>
 <siri:Status>true</siri:Status>
 <siri:MonitoredStopVisit>
 <siri:RecordedAtTime>2010-05-
05T09:14:07.666+02:00</siri:RecordedAtTime>
 <siri:ItemIdentifier>15574363-15574392</siri:ItemIdentifier>

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.siri.org.uk/siri
http://wsdl.siri.org.uk/
http://schemas.xmlsoap.org/soap/envelope/
http://www.siri.org.uk/siri
http://www.siri.org.uk/siri
http://www.siri.org.uk/siri
http://www.siri.org.uk/siri
http://www.siri.org.uk/siri
http://www.siri.org.uk/siri

FprEN 15531-2:2015 (E)

84

 <siri:MonitoringRef>DRYADE:StopPoint:BP:15574346:LOC</siri:MonitoringRef>
 <siri:MonitoredVehicleJourney>
 <siri:LineRef>DRYADE:Line:15574334:LOC</siri:LineRef>
 <siri:FramedVehicleJourneyRef>
 <siri:DataFrameRef>TATROBUS.1.0</siri:DataFrameRef>

 <siri:DatedVehicleJourneyRef>DRYADE:VehicleJourney:15574392:LOC</siri:DatedVe
hicleJourneyRef>
 </siri:FramedVehicleJourneyRef>

 <siri:JourneyPatternRef>DRYADE:JourneyPattern:15574387:LOC</siri:JourneyPatte
rnRef>
 <siri:VehicleMode>bus</siri:VehicleMode>
 <siri:PublishedLineName xml:lang="FR">Ligne 1
BleueBB</siri:PublishedLineName>
 <siri:DirectionName xml:lang="FR">Les Bucoliques
(A)</siri:DirectionName>
 <siri:OperatorRef>DRYADE</siri:OperatorRef>

 <siri:OriginRef>DRYADE:StopPoint:SPOR:15574357:LOC</siri:OriginRef>
 <siri:OriginName>Mairie-1 (A)</siri:OriginName>

 <siri:DestinationRef>DRYADE:StopPoint:SPOR:15574364:LOC</siri:DestinationRef>
 <siri:DestinationName>Les Bucoliques
(A)</siri:DestinationName>
 <siri:Monitored>true</siri:Monitored>
 <siri:InCongestion>false</siri:InCongestion>
 <siri:InPanic>false</siri:InPanic>
 <siri:MonitoredCall>

 <siri:StopPointRef>DRYADE:StopPoint:SPOR:15574363:LOC</siri:StopPointRef>
 <siri:Order>7</siri:Order>
 <siri:StopPointName xml:lang="FR">Orques et Trolls
(A)</siri:StopPointName>
 <siri:VehicleAtStop>false</siri:VehicleAtStop>
 <siri:PlatformTraversal>false</siri:PlatformTraversal>
 <siri:DestinationDisplay xml:lang="FR">Les Bucoliques
(A)</siri:DestinationDisplay>
 <siri:AimedDepartureTime>2010-05-
05T10:05:00.000+02:00</siri:AimedDepartureTime>
 <siri:ExpectedDepartureTime>2010-05-
05T10:08:13.000+02:00</siri:ExpectedDepartureTime>
 <siri:DepartureStatus>delayed</siri:DepartureStatus>
 </siri:MonitoredCall>
 <siri:OnwardCalls>
 <siri:OnwardCall>

 <siri:StopPointRef>DRYADE:StopPoint:SPOR:15574364:LOC</siri:StopPointRef>
 <siri:Order>8</siri:Order>
 <siri:StopPointName xml:lang="FR">Les Bucoliques
(A)</siri:StopPointName>
 <siri:VehicleAtStop>false</siri:VehicleAtStop>
 <siri:AimedDepartureTime>2010-05-
05T10:20:00.000+02:00</siri:AimedDepartureTime>
 <siri:ExpectedDepartureTime>2010-05-
05T10:19:49.000+02:00</siri:ExpectedDepartureTime>

FprEN 15531-2:2015 (E)

85

 <siri:DepartureStatus>onTime</siri:DepartureStatus>
 </siri:OnwardCall>
 </siri:OnwardCalls>
 </siri:MonitoredVehicleJourney>
 </siri:MonitoredStopVisit>
 <siri:MonitoredStopVisit>
 <siri:RecordedAtTime>2010-05-
05T09:14:07.667+02:00</siri:RecordedAtTime>
 <siri:ItemIdentifier>15574370-15574422</siri:ItemIdentifier>

 <siri:MonitoringRef>DRYADE:StopPoint:BP:15574346:LOC</siri:MonitoringRef>
 <siri:MonitoredVehicleJourney>
 <siri:LineRef>DRYADE:Line:15574334:LOC</siri:LineRef>
 <siri:FramedVehicleJourneyRef>
 <siri:DataFrameRef>TATROBUS.1.0</siri:DataFrameRef>

 <siri:DatedVehicleJourneyRef>DRYADE:VehicleJourney:15574422:LOC</siri:DatedVe
hicleJourneyRef>
 </siri:FramedVehicleJourneyRef>

 <siri:JourneyPatternRef>DRYADE:JourneyPattern:15574389:LOC</siri:JourneyPatte
rnRef>
 <siri:VehicleMode>bus</siri:VehicleMode>
 <siri:PublishedLineName xml:lang="FR">Ligne 1
BleueBB</siri:PublishedLineName>
 <siri:DirectionName xml:lang="FR">Les Bucoliques
(A)</siri:DirectionName>
 <siri:OperatorRef>DRYADE</siri:OperatorRef>

 <siri:OriginRef>DRYADE:StopPoint:SPOR:15574365:LOC</siri:OriginRef>
 <siri:OriginName>La Celeste (A)</siri:OriginName>

 <siri:DestinationRef>DRYADE:StopPoint:SPOR:15574371:LOC</siri:DestinationRef>
 <siri:DestinationName>Les Bucoliques
(A)</siri:DestinationName>
 <siri:Monitored>true</siri:Monitored>
 <siri:InCongestion>false</siri:InCongestion>
 <siri:InPanic>false</siri:InPanic>
 <siri:MonitoredCall>

 <siri:StopPointRef>DRYADE:StopPoint:SPOR:15574370:LOC</siri:StopPointRef>
 <siri:Order>6</siri:Order>
 <siri:StopPointName xml:lang="FR">Orques et Trolls
(A)</siri:StopPointName>
 <siri:VehicleAtStop>false</siri:VehicleAtStop>
 <siri:PlatformTraversal>false</siri:PlatformTraversal>
 <siri:DestinationDisplay xml:lang="FR">Les Bucoliques
(A)</siri:DestinationDisplay>
 <siri:AimedDepartureTime>2010-05-
05T10:15:00.000+02:00</siri:AimedDepartureTime>
 <siri:ExpectedDepartureTime>2010-05-
05T10:13:36.000+02:00</siri:ExpectedDepartureTime>
 <siri:DepartureStatus>early</siri:DepartureStatus>
 </siri:MonitoredCall>
 </siri:MonitoredVehicleJourney>
 </siri:MonitoredStopVisit>
 </siri:StopMonitoringDelivery>

FprEN 15531-2:2015 (E)

86

 </Answer>
 <AnswerExtension/>
 </wsdl:GetStopMonitoringResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

10.5.7 SIRI Document WSDL (+SIRI v2.0)

One of the drawbacks of the Document/Literal encoding is that the operation name in the SOAP message is
lost. Without the name, dispatching can be difficult or sometimes impossible and compatibility with RPC/Literal
is also broken. A workaround, based on Document/Literal Wrapped style, is to have more structured message
definitions, including the operation names. Therefore five XSD files have been added.

Table 41 — SOAP Message Structures; XSD files

siri_wsConsumer-Framework.xsd Structures for consumer communication management.

siri_wsConsumer-Services.xsd Structures for consumer services (notifications).

siri_wsProducer-DiscoveryCapability.xsd Structures for discovery services.

siri_wsProducer-Framework.xsd Structures for producer communication management.

siri_wsProducer-Services.xsd Structures for producer services.

The SIRI Document WSDL variant was added with SIRI 2.0 and is named siri_wsProducer-Document.wsdl for
the producer operations, and siri_wsConsumer-Document.wsdl for the client operations.

10.5.8 SIRI WSDL 2.0 (+SIRI v2.0)

The SIRI WSDL 2.0 variant was generated from the Document/Literal WSDL. It uses the same addition XSD
files.

The SIRI WSDL 2.0 variant was added with SIRI 2.0 and the files are named siri_wsProducer-WSDL2.wsdl for
the producer operations, and siri_wsConsumer-WSDL2.wsdl for the client operations.

10.5.9 SIRI WSDL Status

Implementing SIRI as a SOAP Web Service is not mandatory. But if a SIRI SOAP/WSDL implementation is
provided, it shall be compliant with the WSDL files provided by SIRI.

11 Capability Discovery Requests

11.1 General

If a SIRI Functional Service supports the Capability Discovery capability, then it is possible to make a
CapabilityRequest to the service and obtain a CapabilityResponse back with the service's capabilities,
detailing exactly which optional SIRI features are supported and which are not.

11.2 Capability Request

Contained in the CapabilityRequest is a separate service capability request type for each SIRI Functional
Service, of the form xxxCapabilityRequest, which returns a response of the form xxxCapabilityResponse.

FprEN 15531-2:2015 (E)

87

Table 42 — CapabilityDiscoveryRequest
CapabilityRequest

Log RequestTimestamp 1:1 xsd:dateTime Timestamp on request.

Auth.

AccountId 0:1 +Structure Account Identifier. May be used to attribute
requests to a particular application provider
and authentication key. The account may be
common to all users of an application, or to
an individual user. Note that to identify an
individual user the RequestorRef can be
used with an anonymised token. +SIRI v2.0

AccountKey 0:1 +Structure Authentication key for request. May be used
to authenticate requests from a particular
account. +SIRI v2.0

Endpoint
Properties

Address 0:1 EndpointAddre
ss

Address to which response is to be sent:
[Notify] endpoint. If omitted, this may also be
determined from RequestorRef and
preconfigured data, or the http request.

RequestorRef 1:1 →ParticipantC
ode

Identifier of Requestor

DelegatorAddress 0:1 EndpointAddre
ss

Address of originated system to which
delegated response is to be returned. +SIRI
2.0.

If request has been proxied by an
intermediate aggregating system this
provides tracking information relating to the
original requestor. This allows the
aggregation to be stateless.

DelegatorRef 0:1 →ParticipantC
ode

Identifier of delegating system that originated
message. +SIRI 2.0

MessageIdentifier 0:1 MessageQualifi
er

Arbitrary identifier that may be given to
message.

 Concrete service subscription

Payload

ProductionTimetableCapab
ilityRequest 0:1

CapabilityRequ
estStructure

Return the capabilities for the Production
Timetable Service. See Part 3.

EstimatedTimetableCapabil
ityRequest 0:1 Return the capabilities for the Estimated

Timetable Service. . See Part 3.

StopTimetableCapabilityRe
quest 0:1 Return the capabilities for the Stop Timetable

Service. . See Part 3.

StopMonitoringCapabilityR
equest 0:1 Return the capabilities for the Stop

Monitoring Service. See Part 3.

VehicleMonitoringCapabilit
yRequest 0:1 Return the capabilities for the Vehicle

Monitoring Service. See Part 3.

ConnectionTimetableCapab
ilityRequest 0:1 Return the capabilities for the Connection

Timetable Service. See Part 3.

ConnectionMonitoringCapa
bilityRequest 0:1 Return the capabilities for the Connection

Monitoring Service. See Part 3.

GeneralMessage
CapabilityRequest 0:1 Return the capabilities for the General

Message Service. See Part 3.

FacilityMonitoringCapabilit
yRequest

0:1 Return the capabilities for the Facility
Monitoring Service. . See Part 4. SIRI v1.3

SituationExchange
CapabilityRequest

0:1 Return the capabilities for the Situation
Exchange Service. See Part 5..SIRI v1.3

FprEN 15531-2:2015 (E)

88

11.3 Service Capability Discovery

11.3.1 Service Capability Discovery Request — Element

For each SIRI Functional Service, there is a separate request message to discover the exact capabilities of
the implemented service. All capability discovery request messages have the same parameters (see Table
47): they differ only in that they have different names of the form xxxCapabilityRequest where xxx is the
Functional Service name.

Table 43 — SIRI Service CapabilityDiscoveryRequest — Attributes

xxxRequest +Structure SIRI Functional service request for service
xxx.

Attributes version 1:1 VersionString Version Identifier of Functional Service, e.g.
‘1.0c’.

Endpoint
Properties

RequestTimestamp 1:1 xsd:dateTime Time of Request.

MessageIdentifier 0:1 MessageQualifier Arbitrary unique reference to this message.

Options
ParticipantPermissi
ons

0:1 xsd:boolean If AccessControl is supported, whether to
include the requesting participant's
permissions in the response. Default is false.

any Extensions 0:1 xsd:any* Placeholder for user extensions.

11.3.2 Service Capability Discovery Response — Element

For each SIRI Functional Service, there is a separate response message to return the service's specific
capabilities.

Table 44 — CapabilityDiscoveryResponse — Attributes

CapabilityResponse +Structure Description of capabilities

Log ResponseTimestamp 1:1 xsd:dateTime Timestamp on response.

Endpoi
nt
Proper
ties

ProducerRef 0:1 →ParticipantC
ode

Participant reference that identifies producer of data.
May be available from context.

Address 0:1 EndpointAddr
ess

Address to which any acknowledgment should be
sent. Only needed if ConfirmDelivery specified.

ResponseMessageIdentif
ier

0:1 MessageQuali
fier

An arbitrary unique reference associated with the
response which may be used to reference it.

RequestMessageRef 0:1 →MessageQu
alifier

Reference to a unique message identifier associated
with the request which gave rise to this response.

Discov
ery

DelegatorAddress 0:1 EndpointAddr
ess

Address of originated system to which delegated
response is to be returned. +SIRI 2.0.

If request has been proxied by an intermediate
aggregating system this provides tracking
information relating to the original requestor. This
allows the aggregation to be stateless.

DelegatorRef 0:1 →ParticipantC
ode

Identifier of delegating system that originated
message. +SIRI 2.0

 Concrete service response

Payloa
d

ProductionTimetableCap
abilityResponse 0:1 +Structure Capabilities for the Production Timetable Service.

See SIRI Part 3.

FprEN 15531-2:2015 (E)

89

EstimatedTimetableCapa
bilityResponse 0:1 +Structure Capabilities for the Estimated Timetable Service.

See SIRI Part 3.

StopTimetableCapability
Response 0:1 +Structure Capabilities for the Stop Timetable Service. See

SIRI Part 3.

StopMonitoringCapabilit
yResponse 0:1 +Structure Capabilities for the Stop Monitoring Service. See

SIRI Part 3.

VehicleMonitoringCapabi
lityResponse 0:1 +Structure Capabilities for the Vehicle Monitoring Service. See

SIRI Part 3.

ConnectionTimetableCap
abilityResponse 0:1 +Structure Capabilities for the Connection Timetable Service.

See SIRI Part 3.

ConnectionMonitoringCa
pabilityResponse 0:1 +Structure Capabilities for the Connection Monitoring Service.

See SIRI Part 3.

GeneralMessageCapabili
tResponse 0:1 +Structure Capabilities for the General Message Service. See

SIRI Part 3.

 FacilityMonitoringCapabi
lityResponse

0:1 +Structure Capabilities for the Facility Monitoring Service. . See
Part 4. SIRI v1.3

 SituationExchange
CapabilityResponse

0:1 +Structure Capabilities for the Situation Exchange Service. See
Part 5. SIRI v1.3

11.3.3 Functional Service Capability Discovery Response — Element

For each SIRI Functional service there is a separate xxxCapabilityResponse message to return the service's
capabilities. There is different message content for the exact capabilities of each different service; a number of
capabilities are common to all services.

Table 45 — SIRI Common Capability Responses

xxxCapabilityResponse +Structure Response with capabilities for implementation of
SIRI XXX service.

Attribute
s

version 1:1 VersionString Version Identifier of XXX Service, e.g. ‘1.0c’.

Log ResponseTimestamp 1:1 xsd:dateTime Time individual response element was created.

Endpoin
t

RequestMessageRef 0:1 →MessageQualifi
er

Arbitrary unique reference to the request which
gave rise to this message.

Status

Status 0:1 xsd:boolean Whether the request could be processed
successfully or not. Default is true.

ErrorCondition 0:1 +Structure Description of any error or warning condition.

Payload xxxServiceCapabilities 1:1 +Structure Functional Service specific response.

General

GeneralInteraction 0:1 CapabilityGeneralI
nteractionStructur
e

General capabilities common to all SIRI
Functional Service request types.

 Interaction 1:1 +Structure Interaction capabilities.

 RequestRespons
e

1:1 xsd:boolean Whether the service supports Request
Response Interaction. Default is true.

PublishSubscribe 1:1 xsd:boolean Whether the service supports Publish Subscribe
Interaction. Default is true.

Delivery 1:1 +Structure Interaction capabilities.

 DirectDelivery 1:1 xsd:boolean Whether the service supports Direct delivery.

FetchedDelivery 1:1 xsd:boolean Whether the service supports Fetched delivery.

FprEN 15531-2:2015 (E)

90

MultipartDespatch 1:1 xsd:boolean Whether the service supports multiple part
despatch with MoreData flag. Default is true.

MultipleSubscriberFi
lter

1:1 xsd:boolean Whether the service supports multiple
Subscriber Filters.

HasConfirmDelivery 1:1 xsd:boolean Whether Supports Delivery confirm.

HasHeartbeat 1:1 xsd:boolean Whether the service has a heartbeat message.
Default is false.

 VisitNumberIsOrder 0:1 xsd:boolean Whether VisitNumber can be used as a strict
order number within JOURNEY PATTERN
Default is false.

Implem
entation

TransportDescription 0:1 +Structure Nature of Communications Transport protocol

 CommunicationsTra
nsportMethod

1:1 CommunicationsT
ransportMethodEn
um

Communications Transport method used to
exchange messages. Default is ‘httpPost’.

CompressionMethod 1:1 CompressionMeth
odEnum

Method of compression used to optimise
transmission of messages.

Payload

xxxCapabilities 0:1 +Structure Service Specific Functional capabilities - See
Part 3.

xxxPermissions 0:1 +Structure Service Specific permissions - See Part 3.

any Extensions 0:1 xsd:any* Service Specific Capabilities.

11.3.3.1 CommunicationsTransportMethod — Allowed values

Allowed values for CommunicationsTransportMethod (CommunicationsTransportMethodEnumeration).

Table 46 — CommunicationsTransportMethod — Allowed Values (SIRI 2.0)

Value Description

httpPost Transport is using http with XML attachments.

wsdlSoap Transport is using http with WSDL SOAP RPC.

wsdlSoapDocument
Literal

Transport is using http with WSDL SOAP Document Literal. +SIRI v2.0.

other Transport is using other method.

httpUrlJson Transport is using http with simple URL parameters and JSON response
+SIRI v2.0.

httpUrlProtoBuffers Transport is using http with simple URL parameters and ProtoBuffers
response +SIRI v2.0.

11.3.3.2 CompressionMethod — Allowed values

Allowed values for CompressionMethod (CompressionMethodEnumeration).

Table 47 — CompressionMethod — Allowed Values (SIRI 2.0)

Value Description

none No compression method other than that inherent in the protocol is used.

gzip GZIP compression method is used.

other Other compression method is used.

FprEN 15531-2:2015 (E)

91

11.3.4 Service Capability Response — Example

The following is an example of a Service Capability Response for the SIRI Stop Monitoring service:

<StopMonitoringCapabilitiesResponse …. version="1.0">
 <ResponseTimestamp>2005-11-17T09:30:47-05:00</ResponseTimestamp>
 <RequestMessageRef>12536</RequestMessageRef>
 <StopMonitoringServiceCapabilities>
 <GeneralInteraction>
 <Interaction>
 <RequestResponse>true</RequestResponse>
 <PublishSubscribe>true</PublishSubscribe>
 </Interaction>
 <Delivery>
 <DirectDelivery>true</DirectDelivery>
 <FetchedDelivery>false</FetchedDelivery>
 </Delivery>
 <MultipartDespatch>true</MultipartDespatch>
 <MultipleSubscriberFilter>true</MultipleSubscriberFilter>
 <HasConfirmDelivery>false</HasConfirmDelivery>
 <HasHeartbeat>false</HasHeartbeat>
 </GeneralInteraction>
 <TopicFiltering>
 <DefaultPreviewInterval>PT60M</DefaultPreviewInterval>
 <ByStartTime>true</ByStartTime>
 <FilterByMonitoringRef>true</FilterByMonitoringRef>
 <FilterByLineRef>true</FilterByLineRef>
 <FilterByDirectionRef>true</FilterByDirectionRef>
 <FilterByDestination>false</FilterByDestination>
 <FilterByVisitType>true</FilterByVisitType>
 </TopicFiltering>
 <RequestPolicy>
 <NationalLanguage>en-uk</NationalLanguage>
 <NationalLanguage>de</NationalLanguage>
 <GmlCoordinateFormat>epsg:4326</GmlCoordinateFormat>
 <UseReferences>true</UseReferences>
 <UseNames>false</UseNames>
 <HasDetailLevel>false</HasDetailLevel>
 <DefaultDetailLevel>normal</DefaultDetailLevel>
 <HasMaximumVisits>true</HasMaximumVisits>
 <HasMinimumVisitsPerLine>true</HasMinimumVisitsPerLine>
 <HasNumberOfOnwardsCalls>false</HasNumberOfOnwardsCalls>
 <HasNumberOfPreviousCalls>false</HasNumberOfPreviousCalls>
 </RequestPolicy>
 <SubscriptionPolicy>
 <HasIncrementalUpdates>true</HasIncrementalUpdates>
 <HasChangeSensitivity>true</HasChangeSensitivity>
 </SubscriptionPolicy>
 <AccessControl>
 <RequestChecking>false</RequestChecking>
 <CheckOperatorRef>true</CheckOperatorRef>
 <CheckLineRef>true</CheckLineRef>
 <CheckMonitoringRef>true</CheckMonitoringRef>
 </AccessControl>
 <ResponseFeatures>
 <HasLineNotices>true</HasLineNotices>
 </ResponseFeatures>

FprEN 15531-2:2015 (E)

92

 </StopMonitoringServiceCapabilities>
 <StopMonitoringPermissions>
<!—Block General use -->
 <StopMonitoringPermission>
 <AllParticipants/>
 <GeneralCapabilities>
 <RequestResponse>true</RequestResponse>
 <PublishSubscribe>true</PublishSubscribe>
 </GeneralCapabilities>
 <OperatorPermissions>
 <AllowAll>false</AllowAll>
 </OperatorPermissions>
 <LinePermissions>
 <AllowAll>false</AllowAll>
 </LinePermissions>
 <StopMonitorPermissions>
 <AllowAll>true</AllowAll>
 </StopMonitorPermissions>
 </StopMonitoringPermission>
 <!-- Enable NADER to line 22, 46 & operator 101 -->
 <StopMonitoringPermission>
 <ParticipantRef>NADER</ParticipantRef>
 <GeneralCapabilities>
 <RequestResponse>true</RequestResponse>
 <PublishSubscribe>true</PublishSubscribe>
 </GeneralCapabilities>
 <OperatorPermissions>
 <OperatorPermission>
 <Allow>true</Allow>
 <OperatorRef>101</OperatorRef>
 </OperatorPermission>
 </OperatorPermissions>
 <LinePermissions>
 <LinePermission>
 <Allow/>
 <LineRef>22</LineRef>
 </LinePermission>
 <LinePermission>
 <Allow/>
 <LineRef>46</LineRef>
 </LinePermission>
 </LinePermissions>
 <StopMonitorPermissions>
 <AllowAll>true</AllowAll>
 </StopMonitorPermissions>
 </StopMonitoringPermission>
 </StopMonitoringPermissions>
 </StopMonitoringCapabilitiesResponse>
</ CapabilityResponse>

11.4 Functional Service Capability Permission Matrix

11.4.1 Introduction

The xxxCapabilityResponse message may include a permission matrix indicating the rights of the client to
use the functional service. The xxxPermission element has some common parameters that are the same for

FprEN 15531-2:2015 (E)

93

all services, and then specific permissions that apply to the content available through the service. For
example, the Stop Monitoring service has permissions for stops, lines and operators.

The permission element can also be used for configuration as part of an access matrix of permissions for all
participants.

Table 48 — SIRI Functional Service Common Permission — Attributes

xxxServicePermissions +Structure SIRI Permission response for service xxx.

Attributes PermissionVersion 1:1 VersionString Version Identifier of Permission data set.

Payload xxxPermission 1:* +Structure Permission for a service type.

Identity

 choice AllParticipants or named participant(s)

a AllParticipants

–1:1

EmptyType Permissions apply by default to All
participants. May be overridden by other
separate permissions for individual.

b ParticipantRef →ParticipantCode Permission applies to specified participant.

General

GeneralCapability 0:1 +Structure Allowed patterns of interaction.

 RequestResponse 1:1 xsd:boolean Participant may make direct requests for
data. Default is true.

PublishSubscribe 1:1 xsd:boolean Participant may create subscriptions.
Defaults to true.

Permissi
ons

{Depends on Specific SIRI Functional Service – See Part 3.}

any Extensions 0:1 xsd:any* Placeholder for user extensions.

11.4.2 OperatorPermissions — Element

The OperatorPermissions specifies the operators for which a given participant is allowed to access data as
subscriber or consumer. The precise usage allowed will depend on the service. For example, on the SIRI
Timetable service the permission indicates the operators for whom timetables can be returned.

Table 49 — OperatorPermissions — Attributes

OperatorPermissions +Structure SIRI Permissions to access operators.

 choice Choice of AllowAll or named Operators.

a AllowAll –1:1 EmptyType Participant may access data for all operators.

b

OperatorPermission –1:* +Structure Permission to access a specific operator.

 Allow 1:1 xsd:boolean Whether the participant is allowed or not allowed to access
operator (true) or not allowed to access (false).

OperatorRef 1:1 →OperatorCode Identifier of operator whose data participant is allowed to
access.

FprEN 15531-2:2015 (E)

94

11.4.3 LinePermissions — Element

The LinePermissions specifies the Lines for which a given participant is allowed to access data as
subscriber or consumer. The precise usage allowed will depend on the service. For example, on the SIRI
Timetable service the permission indicates the lines for which timetables can be returned.

Table 50 — LinePermissions — Attributes

LinePermissions +Structure SIRI Permissions to access Lines.

 choice Choice of AllowAll or named Line(s).

a AllowAll –1:1 EmptyType Participant may access data for all lines.

b

LinePermission –1:* +Structure Permission to access a specific line.

 Allow 1:1 xsd:boolean Whether the participant is allowed or not allowed to access
line (true) or not allowed to access (false).

LineRef 1:1 →LineCode Identifier of line whose data participant is allowed to access.

DirectionRef 0:* →DirectionCode Identifier of direct of line that participant is allowed to
access.

11.4.4 ConnectionLinkPermissions — Element

The ConnectionLinkPermissions specifies the Connection Links for which a given participant is allowed to
access data as subscriber or consumer. The precise usage allowed will depend on the service. For example,
on the SIRI Connection Timetable service the permission indicates the Connection Links for which timetables
can be returned.

Table 51 — ConnectionLinkPermissions — Attributes

ConnectionLinkPermissions +Structure SIRI Permissions to access connection links.

 choice One of AllowAll or named Connection Link(s).

a AllowAll –1:1 EmptyType Participant may access data for all connection links.

b

ConnectionLinkPermission –1:* +Structure Permission to access a specific connection link.

 Allow 1:1 xsd:boolean Whether the participant is allowed or not allowed to
access connection link (true) or not allowed to access
(false).

ConnectionLinkRef 1:1 →Connection
LinkCode

Identifier of connection link whose data participant is
allowed to access.

11.4.5 StopMonitorPermissions — Element

The StopMonitorPermissions specifies the Monitoring points (LOGICAL DISPLAYs) for which a given
participant is allowed to access data as subscriber or consumer. The precise usage allowed will depend on
the service. For example, on the SIRI Stop Timetable service the permission indicates the SCHEDULED
STOP POINTs or LOGICAL DISPLAYs for which Stop Timetables can be returned.

FprEN 15531-2:2015 (E)

95

Table 52 — StopMonitorPermissions — Attributes

StopMonitorPermissions +Structure SIRI Permissions to access monitoring point (LOGICAL
DISPLAY).

 choice One of AllowAll or named Monitoring point(s).

a AllowAll –1:1 EmptyType Participant may access data for all monitoring points.

b

StopMonitorPermission –1:* +Structure Permission to access a specific monitoring point.

 Allow 1:1 xsd:boolean Whether the participant is allowed or not allowed to
access monitoring point (true) or not allowed to access
(false).

MonitoringRef 1:1 →Monitoring¬
Code

Identifier of monitoring point whose data participant is
allowed to access.

11.4.6 VehicleMonitorPermissions — Element

The VehicleMonitorPermissions specifies the Vehicle Monitoring references for which a given participant is
allowed to access data as subscriber or consumer. On the SIRI Vehicle Monitoring service the permission
indicates the Vehicle Monitoring references for which responses can be returned.

Table 53 — VehicleMonitorPermissions — Attributes

VehicleMonitorPermissions +Structure SIRI Permissions to access vehicle monitoring
references.

 choice One of AllowAll or named Monitoring reference(s).

a AllowAll –1:1 EmptyType Participant may access data for all monitoring
references.

b

VehicleMonitorPermis
sion

–1:* +Structure Permission to access a specific vehicle monitoring
reference.

 Allow 1:1 xsd:boolean Whether the participant is allowed or not allowed to
access monitoring reference (true) or not allowed to
access (false).

VehicleMonitoringR
ef

1:1 →VehicleMonitorin
gCode

Identifier of vehicle monitoring reference whose data
participant is allowed to access.

11.4.7 InfoChannelPermissions — Element

The InfoChannelPermissions specifies the InfoChannel instances for which a given participant is allowed to
access data as subscriber or consumer. On the SIRI General message service the permission indicates the
Info Channels for which responses can be returned.

Table 54 — InfoChannelPermissions — Attributes

InfoChannelPermissions +Structure SIRI Permissions to access info channel references.

 choice One of AllowAll or named Channels.

a AllowAll –1:1 EmptyType Participant may access data for all info channels.

b

InfoChannelPermission –1:* +Structure Permission to access a specific info channel reference.

 Allow 1:1 xsd:boolean Whether the participant is allowed or not allowed to
access info channel (true) or not allowed to access
(false).

InfoChannelRef 1:1 →InfoChannel
Code

Identifier of info channel whose data participant is allowed
to access.

FprEN 15531-2:2015 (E)

96

12 SIRI for Simple Web Services – SIRI Lite (+SIRI v2.0)

12.1 Introduction

12.1.1 General

Version 1.0 of SIRI was intended primarily for server-to-server communication between the real-time
operations systems of transport companies. The growth of public internet use – and in particular of
smartphones using the mobile internet – has led to the additional requirement for direct delivery of data to end
user devices, as well as a need for massive scalability. The SIRI Simple Web services (‘SIRI Lite’) address
these needs by providing an alternative transport protocol that uses a payload model derived automatically
from SIRI.

SIRI Lite has the following objectives:

— To improve scalability by decreasing bandwidth consumption,

— To improve scalability by decreasing the processing power required to process requests on both the
server and the user device,

— To lower the cost of integration for application developers by making it easier to develop with SIRI using
mainstream technology platforms for mobile devices,

— To support common end user application use cases,

— To minimize the need, if any, to change the existing SIRI schema and data model,

— To enable the use of automatic transforms drawing on the structure of the SIRI model;

The SIRI Simple Web services are summarised as follows:

1) In principle a SIRI-Lite protocol can be used with any SIRI Functional Service, and any interaction pattern,
but it is envisaged that it is particularly relevant for Request/Response interactions for the SIRI-SM, SIRI-
VM and the SIRI-SX services (and for the Stop & Line discovery services which can be used to provide
reference data to support the use of those services).

2) The SIRI-Lite protocol communication transport protocol is used as follows:

— Requests are specified as http URL parameters, the endpoint indicating the format to use for the
response.

— Responses are returned as http responses, encoded in the lightweight format specified on the request
endpoint, for example JSON, or binary XML. See alternative response encodings below.

3) Normal SIRI request filtering is supported. It is important to be able to minimize the data that needs to
be transmitted; especially for wireless applications and so it is useful to support server-side filtering of the
response data.

4) The normal SIRI XML data types are used, simplifying the transforms needed to create alternative
responses from an existing SIRI service.

— There is one additional refinement permitted: to simplify processing for mobile devices an optional
request parameter to map duration and timestamp formats to UNIX formats is supported.

5) The normal exception conditions are supported for when data or the service are not available and are
returned in the responses

FprEN 15531-2:2015 (E)

97

6) Additional authentication elements on the request are supported to identify the requesting service.
These are added to all requests the SIRI v2.0 framework and are available for use in the SIRI Lite
services.

12.1.2 Existing Implementations

The design of the SIRI Lite services is informed by the experience of a number of members of the world-wide
SIRI community, in particular that of the Metropolitan Transportation Authority (MTA), the primary public
transport operator for New York City. MTA is using SIRI with similar extensions described in this document to
support all distribution of a large real-time bus tracking and customer information system.

12.1.3 Using SIRI-LITE services in combination

12.1.3.1 General

It is envisaged that a Consumer application will use a sequence of different SIRI-LITE requests to
successively obtain just the data of specific interest to the user. This is illustrated in the following two use
cases for obtaining passenger information on an end user device.

NOTE The examples assume that the Consumer application will have previously discovered the endpoints for
accessing the required SIRI services. Discovery is outside the SIRI standard but can be done routinely with generic
discovery services.

12.1.3.2 Providing real-time Stop Arrivals & Departures – Use Case for SIRI LITE

a) Use device location or address finder service to locate user.

b) Use SIRI Stop Point discovery service to find available stops in an area.

c) Display stops to user.

d) User selects a stop.

e) Use SIRI-SM Stop Monitoring services to get visits for a selected stop.

f) Display the arrivals and departures at stop to the user.

g) User selects a journey.

h) Use SIRI-VM Vehicle Monitoring to get detailed calling pattern for a selected journey.

i) Display calling pattern of selected journey to user.

12.1.3.3 Vehicle positions – Use Case for SIRI LITE

a) Use device location or address finder service to locate user.

b) Use SIRI Line discovery service to find available lines in an area.

c) Display lines to user.

d) User selects a line.

e) Use SIRI-VM Vehicle Monitoring services to get just vehicle positions for a selected line.

f) Display positions of vehicles to user on a spatial visualisation on the device.

FprEN 15531-2:2015 (E)

98

g) User selects a vehicle.

h) Use SIRI-VM Vehicle Monitoring services to get journey with predicted times for a selected line.

i) Display calling pattern of selected journey to user.

12.1.4 Alternative Response Encoding

The response of a SIRI Lite service is encoded in an agreed technology format chosen for speed and
efficiency for serialization as payload of an http request. In this document we use JSON (JavaScript Object
Notation) as the preferred format for examples, but the SIRI LITE need not be restricted to a single
technology.

Table 55 – Alternative Response Encodings for SIRI Simple Web Services

Response Encoding Description Reference

XML Plain XML http://www.w3.org/XML

XML EXI

XML Efficient XML
Interchange

Encodings and/or transformations of XML to enhance
processing speed and efficiency

http://www.w3.org/XML/EXI/

JSON:

JavaScript Object
Notation

A loosely typed format. More space efficient than XML and very
commonly used for public facing web services, including those
used by in-browser and native mobile phone applications. Some
XML binding libraries have the ability to output as JSON as well
as XML.

http://www.json.org/

Google Protocol
Buffers:

A strongly typed and bound encoding that is very space and
speed efficient for serializing structured data

http://code.google.com/p/prot
obuf/

Apache Thrift An Open source version of buffer. http://thrift.apache.org/

Fast Infoset The Fast Infoset technology provides an alternative to W3C XML
syntax as a means of representing instances of the W3C XML
Information Set.

http://www.itu.int/ITU-
T/asn1/xml/finf.htm

12.1.5 Lossless transforms

Under each of the above cases, the data model and types do not change. When SIRI is decoded from a
rendering any of the above formats, the original SIRI data model and types are retained in full.

12.1.6 Simple transforms

An encoding style that favours straightforward and automated mapping of the XML structures is preferred (e.g.
for JSON nested structures rather than arrays).

12.2 Encoding of URL Requests

12.2.1 Complete Request Encoding in HTTP URL’s

Any SIRI request may be formulated under SIRI Simple Web Services entirely within the scope of an HTTP
URL - rather than as an XML document attached to the http request, as in the normal SIRI usage.

For example:

 http://server.siri.com/path/to/api/vehicle-monitoring.xml?LineRef=Line1

The SIRI LITE request includes:

http://www.w3.org/XML
http://www.w3.org/XML/EXI/
http://www.json.org/
http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/
http://thrift.apache.org/
http://www.itu.int/ITU-T/asn1/xml/finf.htm
http://www.itu.int/ITU-T/asn1/xml/finf.htm
http://server.siri.com/path/to/api/vehicle-monitoring.xml?LineRef=Line1

FprEN 15531-2:2015 (E)

99

— Which service is being requested (e.g. StopMonitoring, VehicleMonitoring)

— Parameters of the request (i.e. topics and policies)

— Desired response encoding (when alternatives to XML are available).

12.2.2 General format of SIRI Lite request URL

SIRI LITE requests follow a generalized URL structure of the form:

endpoint?query_string

Where endpoint is made up of the normal http components,

scheme://host:port/path?query_string

Thus the overall elements are:

— scheme: http or https.

— host: the hostname or IP address of the service.

— port: the IP port of the service (default 80 for http, 443 for https).

— path: the hierarchical portion of the URL indicating the SIRI functional service and version

— query string: parameters of the request

For example:

 http://www.tfl.gov.uk/siri/2.0/stop-monitoring.json?MonitoringRef=ABCD

12.2.3 Endpoints and Service Identification

The path part of the request is used to indicate both the functional service (SIRI-SM, SIRI-VM, etc.) being
requested, the API version, and the encoding to be used.

For example, Stop Monitoring encoded with JSON:

 http://www.tfl.gov.uk/siri/2.0/stop-monitoring.json?MonitoringRef=ABCD

For example, Vehicle Monitoring encoded with XML EXI:

 http://www.tfl.gov.uk/siri/2.0/vehicle-monitoring.exi?LineRef=Line1

Thus for each SIRI functional service and encoding combination, a separate endpoint shall be provided: the
actual structure of the path used does not need to be prescribed by the standard, but it is recommended that it
also includes a version number to allow for concurrent support of different versions.

12.2.4 Encoding of Service Parameters on http request

Request parameters from a SIRI functional request are included directly in the query string of the request
URL.

Information about any XML groups used to organize the parameters within the XML request, such as Topics
or Policies group should be omitted.

http://www.tfl.gov.uk/siri/2.0/stop-monitoring.json?MonitoringRef=ABCD
http://www.tfl.gov.uk/siri/2.0/stop-monitoring.json?MonitoringRef=ABCD
http://www.tfl.gov.uk/siri/2.0/vehicle-monitoring.exi?LineRef=Line1

FprEN 15531-2:2015 (E)

100

For example, for a StopMonitoringRequest, a valid URL might be:

http://www.vbb.de/siri/2.0/stop-
monitoring.json?MonitoringRef=4565&LineRef=X56&StopMonitoringDetailLevel=calls

In this example, MonitoringRef and LineRef both come from the StopMonitoringTopicGroup, while
StopMonitoringDetailLevel comes from the StopMonitoringRequestPolicyGroup.

NOTE Older implementations of HTTP clients or servers may have limits on how long a valid URI can be.

12.2.5 Naming of Request Parameters with Hierarchy

Most request topics or policies parameters are “simple”, comprised of a single element, but a few are complex
i.e. have nested sub-elements. In the case of a complex element, the parameter name should be constructed
by concatenating the element names, separating the two by a period.

12.2.6 Naming of Parameters with Plural Cardinality

Some request topics or policies can have a cardinality of more than one. In this case, the parameter should be
repeated for each element.

For example, SituationExchange can have multiple LineRef topics (in the SituationNetworkFilterGroup). A
valid URL that specifies multiple LineRef elements might be:

http://ratp.fr/2.0/situation-exchange.xml?LineRef=M13&LineRef=M8&LineRef=M13

12.2.7 Handling of invalid request combinations

The normal XML encoding for a SIRI functional service includes validation of data types and also enforces
constraints that prevent certain combinations of parameters that are not allowed or meaningless. The direct
encoding does not prevent such combinations. A SIRI-LITE function service shall enforce the same
constraints and return an appropriate error message if it detects an illegal combination (for example
ParametersIgnored, UnknownExtensions, InvalidDataReferences).

12.2.8 Specifying the encoding of the Response

The encoding of the response format is given by the choice of endpoint (and may be indicated as part of the
path component of the URL), not as a parameter in the query string.

For example, an XML response might be retrieved using an endpoint:

http://server.siri.com/path/to/api/vehicle-monitoring.xml?LineRef=Line1

Or a JSON response:

http://server.siri.com/path/to/api/vehicle-monitoring.json?LineRef=Line1

12.3 Examples

12.3.1 General

In the following examples we show SIRI-LITE encodings for XML and JSON.

http://www.vbb.de/siri/2.0/stop-monitoring.json?MonitoringRef=4565&LineRef=X56&StopMonitoringDetailLevel=calls
http://www.vbb.de/siri/2.0/stop-monitoring.json?MonitoringRef=4565&LineRef=X56&StopMonitoringDetailLevel=calls
http://ratp.fr/2.0/situation-exchange.xml?LineRef=M13&LineRef=M8&LineRef=M13
http://server.siri.com/path/to/api/vehicle-monitoring.xml?LineRef=Line1
http://server.siri.com/path/to/api/vehicle-monitoring.json?LineRef=Line1

FprEN 15531-2:2015 (E)

101

12.3.2 SIRI-SM Simple Stop Monitoring request to fetch stop departures – SIRI LITE Examples

12.3.2.1 General

The following example shows the request response pair to produce a JSON response show to basic Stop
Departures for a stop using the SIRI-SM Stop Monitoring Service.

12.3.2.2 Simple Stop Monitoring request to fetch stop departures – XML Example

The following code fragment shows the XML attachment for a SIRI XML request for a SIRI-SM service.

 <ServiceRequest>
 <RequestTimestamp>2012-06-15T12:46:05-04:00</RequestTimestamp>
 <StopMonitoringRequest version="2.0">
 <RequestTimestamp>2012-06-15T12:46:05-04:00</RequestTimestamp>
 <!--=======TOPIC ===================================== -->
 <MonitoringRef>305453</MonitoringRef>
 </StopMonitoringRequest>
 </ServiceRequest>

12.3.2.3 Simple Stop Monitoring request to return stop departures – JSON Example

The following code fragment shows the equivalent request translating the XML parameters into request
parameters for an SIRI Lite SIRI-SM service.

http://bustime.mta.info/api/siri/stop-monitoring.json?MonitoringRef=305453

12.3.2.4 Simple Stop Monitoring response to return stop departures – XML Example

The following code fragment shows the XML document for a SIRI XML response for a SIRI-SM service.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Siri xmlns:ns2="http://www.ifopt.org.uk/acsb"
xmlns:ns4="http://datex2.eu/schema/1_0/1_0"
xmlns:ns3="http://www.ifopt.org.uk/ifopt" xmlns="http://www.siri.org.uk/siri">
 <ServiceDelivery>
 <ResponseTimestamp>2012-06-15T12:47:24.675-04:00</ResponseTimestamp>
 <StopMonitoringDelivery version="2.0">
 <ResponseTimestamp>2012-06-15T12:47:24.675-04:00</ResponseTimestamp>
 <ValidUntil>2012-06-15T12:48:24.675-04:00</ValidUntil>
 <MonitoredStopVisit>
 <RecordedAtTime>2012-06-15T12:46:57-04:00</RecordedAtTime>
 <MonitoredVehicleJourney>
 <LineRef>B63</LineRef>
 <DirectionRef>1</DirectionRef>
 <FramedVehicleJourneyRef>
 <DataFrameRef>2012-06-15</DataFrameRef>

 <DatedVehicleJourneyRef>20120408EA_071100_B63_0113_B35_5</DatedVehicleJourney
Ref>
 </FramedVehicleJourneyRef>
 <JourneyPatternRef>B630113</JourneyPatternRef>
 <PublishedLineName>B63</PublishedLineName>
 <OperatorRef>MTA NYCT</OperatorRef>
 <OriginRef>801131</OriginRef>
 <DestinationRef>801042</DestinationRef>
 <DestinationName>BAY RIDGE SHORE RD via 5 AV</DestinationName>

http://bustime.mta.info/api/siri/stop-monitoring.json?MonitoringRef=305453
http://www.ifopt.org.uk/acsb
http://datex2.eu/schema/1_0/1_0
http://www.ifopt.org.uk/ifopt
http://www.siri.org.uk/siri

FprEN 15531-2:2015 (E)

102

 <Monitored>true</Monitored>
 <VehicleLocation>
 <Longitude>-74.012167</Longitude>
 <Latitude>40.64333</Latitude>
 </VehicleLocation>
 <VehicleRef>7589</VehicleRef>
 <MonitoredCall>
 <StopPointRef>305453</StopPointRef>
 <VisitNumber>1</VisitNumber>
 <StopPointName>5 AV - BAY RIDGE AV</StopPointName>
 <ExpectedDepartureTime>2012-06-15T12:49:57-
04:00</ExpectedDepartureTime>
 </MonitoredCall>
 </MonitoredVehicleJourney>
 </MonitoredStopVisit>
 <MonitoredStopVisit>
 <RecordedAtTime>2012-06-15T12:47:00-04:00</RecordedAtTime>
 <MonitoredVehicleJourney>
 <LineRef>B63</LineRef>
 <DirectionRef>1</DirectionRef>
 <FramedVehicleJourneyRef>
 <DataFrameRef>2012-06-15</DataFrameRef>

 <DatedVehicleJourneyRef>20120408EA_072300_B63_0113_B70_204</DatedVehicleJourn
eyRef>
 </FramedVehicleJourneyRef>
 <JourneyPatternRef>B630113</JourneyPatternRef>
 <PublishedLineName>B63</PublishedLineName>
 <OperatorRef>MTA NYCT</OperatorRef>
 <OriginRef>801131</OriginRef>
 <DestinationRef>801042</DestinationRef>
 <DestinationName>BAY RIDGE SHORE RD via 5 AV</DestinationName>
 <Monitored>true</Monitored>
 <VehicleLocation>
 <Longitude>-74.000672</Longitude>
 <Latitude>40.654379</Latitude>
 </VehicleLocation>
 <VehicleRef>7583</VehicleRef>
 <MonitoredCall>
 <StopPointRef>305453</StopPointRef>
 <VisitNumber>1</VisitNumber>
 <StopPointName>5 AV - BAY RIDGE AV</StopPointName>
 <ExpectedDepartureTime>2012-06-15T12:55:57-
04:00</ExpectedDepartureTime>
 </MonitoredCall>
 </MonitoredVehicleJourney>
 </MonitoredStopVisit>
 </StopMonitoringDelivery>
 </ServiceDelivery>
</Siri>

12.3.2.5 Simple Stop Monitoring response to return stop departures – JSON Example

The following code fragment shows the equivalent response translating the SIRI-SM XML document into
JSON value pairs.

{

FprEN 15531-2:2015 (E)

103

"Siri":{
 "ServiceDelivery":{
 "ResponseTimestamp":"2012-06-15T12:47:24.675-04:00",
 "StopMonitoringDelivery":[
 {
 "MonitoredStopVisit":[
 {
 "MonitoredVehicleJourney":{
 "LineRef":"B63",
 "DirectionRef":"1",
 "FramedVehicleJourneyRef":{
 "DataFrameRef":"2012-06-15",
"DatedVehicleJourneyRef":"20120408EA_071100_B63_0113_B35_5"
 },
 "JourneyPatternRef":"B630113",
 "PublishedLineName":"B63",
 "OperatorRef":"MTA NYCT",
 "OriginRef":"801131",
 "DestinationRef":"801042",
 "DestinationName":"BAY RIDGE SHORE RD via 5
AV",
 "Monitored":true,
 "VehicleLocation":{
 "Longitude":-74.018271,
 "Latitude":40.637455
 },
 "VehicleRef":"7589",
 "MonitoredCall":{
 "StopPointRef":"305453",
 "VisitNumber":1,
 "StopPointName":"5 AV - BAY RIDGE AV",
 "ExpectedDepartureTime": "2012-06-
15T12:49:57-04:00"
 }
 },
 "RecordedAtTime":"2012-06-15T12:46:57-04:00"
 },
 {
 "MonitoredVehicleJourney":{
 "LineRef":"B63",
 "DirectionRef":"1",
 "FramedVehicleJourneyRef":{
 "DataFrameRef":"2012-06-15",

"DatedVehicleJourneyRef":"20120408EA_072300_B63_0113_B70_204"
 },
 "JourneyPatternRef":"B630113",
 "PublishedLineName":"B63",
 "OperatorRef":"MTA NYCT",
 "OriginRef":"801131",
 "DestinationRef":"801042",
 "DestinationName":"BAY RIDGE SHORE RD via 5
AV",
 "Monitored":true,
 "VehicleLocation":{
 "Longitude":-74.010629,
 "Latitude":40.644808

FprEN 15531-2:2015 (E)

104

 },
 "VehicleRef":"7583",
 "MonitoredCall":{
 "StopPointRef":"305453",
 "VisitNumber":1,
 "StopPointName":"5 AV - BAY RIDGE AV"
 "ExpectedDepartureTime": "2012-06-
15T12:55:57-04:00"
 }
 },
 "RecordedAtTime":"2012-06-15T12:56:15.000-04:00"
 },
],
 "ResponseTimestamp":"2012-06-15T12:47:24.675-04:00",
 "ValidUntil":"2012-06-15T12:48:24.675-04:00"
 }
]
 }
}
}

12.3.3 SIRI-VM Simple Vehicle Monitoring request to fetch vehicle positions – SIRI Lite Examples

12.3.3.1 General

The following example shows the request response pair to produce a JSON response for a SIRI-VM service to
fetch a MONITORED VEHICLE JOURNEY.

The request also includes authentication parameters.

— AccountId: AppDev123 - An account for a given device application provider.

— AccountKey: 123ABC - An authentication key specific to the account for a given device
application provider.

The authentication details may be used to track requests by account. To support the tracking of requests by
individual users, subject to user consent, may be used.

— RequestorRef :X4573 - an anonymised token identifying the user.

12.3.3.2 Simple Vehicle Monitoring request to fetch vehicle positions – XML Example

The following code fragment shows the XML attachment for a SIRI XML request for a SIRI-VM service.

 <ServiceRequest>
 <!--======ENDPOINT REFERENCES================================-->
 <RequestTimestamp>2012-06-15T13:23:04-04:00</RequestTimestamp>
 <AccountId>Client1</AccountKey>
 <AccountKey>123ABC</AccountKey>
 <VehicleMonitoringRequest version="2.0">
 <RequestTimestamp>2012-06-15T13:23:04-04:00</RequestTimestamp>
 <!--=======TOPIC ===================================== -->
 <VehicleRef>7574</VehicleRef>
 <!--=======POLICY==-->
 <VehicleMonitoringDetailLevel>basic</VehicleMonitoringDetailLevel>
 </VehicleMonitoringRequest>

FprEN 15531-2:2015 (E)

105

12.3.3.3 Simple Vehicle Monitoring request to fetch vehicle positions – JSON Example

The following code fragment shows the equivalent request translating the XML parameters into request
parameters for an SIRI Lite SIRI-VM service.

http://www.bahn.nl/siri/2.0/vehicle-monitoring.json?VehicleMonitoringRef=7574
&VehicleMonitoringDetailLevel=basic&AccountId=AppDev123&AccountKey=123ABC

12.3.3.4 Simple Vehicle Monitoring response to return vehicle positions – XML Example

The following code fragment shows the XML document for a SIRI XML response for a SIRI-VM service.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Siri xmlns:ns2="http://www.ifopt.org.uk/acsb"
xmlns:ns4="http://datex2.eu/schema/1_0/1_0"
xmlns:ns3="http://www.ifopt.org.uk/ifopt" xmlns="http://www.siri.org.uk/siri">
 <ServiceDelivery version="2.0">
 <ResponseTimestamp>2012-06-15T13:23:05.627-04:00</ResponseTimestamp>
 <VehicleMonitoringDelivery>
 <ResponseTimestamp>2012-06-15T13:23:05.627-04:00</ResponseTimestamp>
 <ValidUntil>2012-06-15T13:24:05.627-04:00</ValidUntil>
 <VehicleActivity>
 <RecordedAtTime>2012-06-15T13:22:47-04:00</RecordedAtTime>
 <MonitoredVehicleJourney>
 <LineRef>B63</LineRef>
 <DirectionRef>1</DirectionRef>
 <FramedVehicleJourneyRef>
 <DataFrameRef>2012-06-15</DataFrameRef>

 <DatedVehicleJourneyRef>20120408EA_075900_B63_0113_B70_213</DatedVehicleJourn
eyRef>
 </FramedVehicleJourneyRef>
 <JourneyPatternRef>B630113</JourneyPatternRef>
 <PublishedLineName>B63</PublishedLineName>
 <OperatorRef>MTA NYCT</OperatorRef>
 <OriginRef>801131</OriginRef>
 <DestinationRef>801042</DestinationRef>
 <DestinationName>BAY RIDGE SHORE RD via 5 AV</DestinationName>
 <Monitored>true</Monitored>
 <VehicleLocation>
 <Longitude>-73.992923</Longitude>
 <Latitude>40.661826</Latitude>
 </VehicleLocation>
 <Bearing>223.65405</Bearing>
 <ProgressRate>normalProgress</ProgressRate>
 <VehicleRef>7574</VehicleRef>
 <MonitoredCall>
 <StopPointRef>308335</StopPointRef>
 <VisitNumber>1</VisitNumber>
 <StopPointName>5 AV - 21 ST</StopPointName>
 <ExpectedDepartureTime>2012-06-15T13:23:15-
04:00</ExpectedDepartureTime>
 </MonitoredCall>
 </MonitoredVehicleJourney>
 </VehicleActivity>
 </VehicleMonitoringDelivery>
 </ServiceDelivery>
</Siri>

http://www.bahn.nl/siri/2.0/vehicle-monitoring.json?VehicleMonitoringRef=7574
http://www.ifopt.org.uk/acsb
http://datex2.eu/schema/1_0/1_0
http://www.ifopt.org.uk/ifopt
http://www.siri.org.uk/siri

FprEN 15531-2:2015 (E)

106

12.3.3.5 Simple Vehicle Monitoring response to return vehicle positions – JSON Example

The following code fragment shows the equivalent response translating the SIRI-VM XML document into
JSON value pairs.

{
"Siri":{
 "ServiceDelivery":{
 "ResponseTimestamp":"2012-06-15T13:23:06.591-04:00",
 "VehicleMonitoringDelivery":[
 {
 "VehicleActivity":[
 {
 "MonitoredVehicleJourney":{
 "LineRef":"B63",
 "DirectionRef":"1",
 "FramedVehicleJourneyRef":{
 "DataFrameRef":"2012-06-15",

"DatedVehicleJourneyRef":"20120408EA_075900_B63_0113_B70_213"
 },
 "JourneyPatternRef":"B630113",
 "PublishedLineName":"B63",
 "OperatorRef":"MTA NYCT",
 "OriginRef":"801131",
 "DestinationRef":"801042",
 "DestinationName":"BAY RIDGE SHORE RD via 5
AV",
 "Monitored":true,
 "VehicleLocation":{
 "Longitude":-73.992923,
 "Latitude":40.661826
 },
 "Bearing":223.65405,
 "ProgressRate":"normalProgress",
 "VehicleRef":"7574",
 "MonitoredCall":{
 "StopPointRef":"308335",
 "VisitNumber":1,
 "StopPointName":"5 AV - 21 ST",
 "ExpectedDepartureTime":"2012-06-
15T13:23:15-04:00"
 }
 },
 "RecordedAtTime":"2012-06-15T13:22:47.000-04:00"
 }
],
 "ResponseTimestamp":"2012-06-15T13:23:06.591-04:00",
 "ValidUntil":"2012-06-15T13:24:06.591-04:00"
 }
]
 }
}
}

FprEN 15531-2:2015 (E)

107

12.3.4 SIRI-VM Complex Vehicle Monitoring to obtain journeys – SIRI Lite Examples

12.3.4.1 General

The following example shows the request response pair to produce a JSON response of vehicle predictions,
including position and onward calling pattern, for a LINE. It limits the number of onward calls to 2. There are
also additional Situation Exchange elements in the same delivery.

12.3.4.2 Complex Vehicle Monitoring request to fetch monitored journeys – XML Example

The following code fragment shows the XML attachment for a SIRI XML request for a SIRI-VM service.

 <ServiceRequest>
 <!--======ENDPOINT REFERENCES================================-->
 <RequestTimestamp>2004-12-17T09:30:47-05:00</RequestTimestamp>
 <VehicleMonitoringRequest version="2.0">
 <RequestTimestamp>2004-12-17T09:30:47-05:00</RequestTimestamp>
 <!--=======TOPIC ===================================== -->
 <LineRef>B63</ LineRef >
 <DirectionRef>1</DirectionRef>
 <!--=======POLICY==-->
 <VehicleMonitoringDetailLevel>calls</VehicleMonitoringDetailLevel>
 <MaximumNumberOfCalls>
<Onwards>2</Onwards>
 </MaximumNumberOfCalls>
 </VehicleMonitoringRequest>

12.3.4.3 Complex Vehicle Monitoring request to fetch monitored journeys – RESTful Example

http://bustime.mta.info/api/siri/vehicle-
monitoring.xml?LineRef=B63&DirectionRef=1&VehicleMonitoringDetailLevel=calls&Maxi
mumNumberOfCalls.Onwards=2

12.3.4.4 Complex Vehicle Monitoring response to return monitored journeys – XML Example

The following code fragment shows the XML document for a SIRI XML response for a SIRI-VM service.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Siri xmlns:ns2="http://www.ifopt.org.uk/acsb"
xmlns:ns4="http://datex2.eu/schema/1_0/1_0"
xmlns:ns3="http://www.ifopt.org.uk/ifopt" xmlns="http://www.siri.org.uk/siri"
version="2.0">
 <ServiceDelivery>
 <ResponseTimestamp>2012-06-15T13:40:20.738-04:00</ResponseTimestamp>
 <VehicleMonitoringDelivery version="2.0">
 <ResponseTimestamp>2012-06-15T13:40:20.738-04:00</ResponseTimestamp>
 <ValidUntil>2012-06-15T13:41:20.738-04:00</ValidUntil>
 <VehicleActivity>
 <RecordedAtTime>2012-06-15T13:40:05.900-04:00</RecordedAtTime>
 <MonitoredVehicleJourney>
 <LineRef>S78</LineRef>
 <DirectionRef>1</DirectionRef>
 <FramedVehicleJourneyRef>
 <DataFrameRef>2012-06-15</DataFrameRef>

 <DatedVehicleJourneyRef>20120408EA_079500_S78_0470_MISC_890</DatedVehicleJour
neyRef>

http://bustime.mta.info/api/siri/vehicle-monitoring.xml?LineRef=B63&DirectionRef=1&VehicleMonitoringDetailLevel=calls
http://bustime.mta.info/api/siri/vehicle-monitoring.xml?LineRef=B63&DirectionRef=1&VehicleMonitoringDetailLevel=calls
http://www.ifopt.org.uk/acsb
http://datex2.eu/schema/1_0/1_0
http://www.ifopt.org.uk/ifopt
http://www.siri.org.uk/siri

FprEN 15531-2:2015 (E)

108

 </FramedVehicleJourneyRef>
 <JourneyPatternRef>S780470</JourneyPatternRef>
 <PublishedLineName>S78</PublishedLineName>
 <OperatorRef>MTA NYCT</OperatorRef>
 <OriginRef>805164</OriginRef>
 <DestinationRef>905179</DestinationRef>
 <DestinationName>BRICKTOWN MALL</DestinationName>
 <SituationRef>
 <SituationSimpleRef>36926</SituationSimpleRef>
 </SituationRef>
 <Monitored>true</Monitored>
 <VehicleLocation>
 <Longitude>-74.076856</Longitude>
 <Latitude>40.607764</Latitude>
 </VehicleLocation>
 <Bearing>227.4601</Bearing>
 <ProgressRate>normalProgress</ProgressRate>
 <VehicleRef>6226</VehicleRef>
 <MonitoredCall>
 <StopPointRef>201092</StopPointRef>
 <VisitNumber>1</VisitNumber>
 <StopPointName>HYLAN BL - DONLEY AV</StopPointName>
 <EstimatedDepartureTime>2012-06-15T13:41:00-
04:00</EstimatedDepartureTime>
 </MonitoredCall>
 <OnwardCalls>
 <OnwardCall>
 <StopPointRef>905018</StopPointRef>
 <VisitNumber>1</VisitNumber>
 <StopPointName>HYLAN BL - NARROWS RD S</StopPointName>
 <EstimatedDepartureTime>2012-06-15T13:44:00-
04:00</EstimatedDepartureTime>
 </OnwardCall>
 <OnwardCall>
 <StopPointRef>201093</StopPointRef>
 <VisitNumber>1</VisitNumber>
 <StopPointName>OLGA PL - POUCH TER</StopPointName>
 <EstimatedDepartureTime>2012-06-15T13:47:00-
04:00</EstimatedDepartureTime>
 </OnwardCall>
 </OnwardCalls>
 </MonitoredVehicleJourney>
 </VehicleActivity>
 <VehicleActivity>
 <RecordedAtTime>2012-06-15T13:40:04.749-04:00</RecordedAtTime>
 <MonitoredVehicleJourney>
 <LineRef>S78</LineRef>
 <DirectionRef>1</DirectionRef>
 <FramedVehicleJourneyRef>
 <DataFrameRef>2012-06-15</DataFrameRef>

 <DatedVehicleJourneyRef>20120408EA_072000_S78_0470_MISC_835</DatedVehicleJour
neyRef>
 </FramedVehicleJourneyRef>
 <JourneyPatternRef>S780470</JourneyPatternRef>
 <PublishedLineName>S78</PublishedLineName>
 <OperatorRef>MTA NYCT</OperatorRef>

FprEN 15531-2:2015 (E)

109

 <OriginRef>805164</OriginRef>
 <DestinationRef>905179</DestinationRef>
 <DestinationName>BRICKTOWN MALL</DestinationName>
 <SituationRef>
 <SituationSimpleRef>36926</SituationSimpleRef>
 </SituationRef>
 <Monitored>true</Monitored>
 <VehicleLocation>
 <Longitude>-74.189972</Longitude>
 <Latitude>40.522584</Latitude>
 </VehicleLocation>
 <Bearing>199.91507</Bearing>
 <ProgressRate>normalProgress</ProgressRate>
 <VehicleRef>6214</VehicleRef>
 <MonitoredCall>
 <StopPointRef>201183</StopPointRef>
 <VisitNumber>1</VisitNumber>
 <StopPointName>HYLAN BL - CORNELIA AV</StopPointName>
 <EstimatedDepartureTime>2012-06-15T13:40:30-
04:00</EstimatedDepartureTime>
 </MonitoredCall>
 <OnwardCalls>
 <OnwardCall>
 <StopPointRef>201184</StopPointRef>
 <VisitNumber>1</VisitNumber>
 <StopPointName>HYLAN BL - SEGUINE AV</StopPointName>
 <EstimatedDepartureTime>2012-06-15T13:43:30-
04:00</EstimatedDepartureTime>
 </OnwardCall>
 <OnwardCall>
 <StopPointRef>201185</StopPointRef>
 <VisitNumber>1</VisitNumber>
 <StopPointName>HYLAN BL - INEZ ST</StopPointName>
 <EstimatedDepartureTime>2012-06-15T13:47:30-
04:00</EstimatedDepartureTime>
 </OnwardCall>
 </OnwardCalls>
 </MonitoredVehicleJourney>
 </VehicleActivity>
 </VehicleMonitoringDelivery>
 <SituationExchangeDelivery>
 <Situations>
 <PtSituationElement>
 <SituationNumber>36926</SituationNumber>
 <PublicationWindow>
 <StartTime>2012-03-26T00:00:00-04:00</StartTime>
 <EndTime>2012-06-29T23:59:00-04:00</EndTime>
 </PublicationWindow>
 <Severity>undefined</Severity>
 <Summary xml:lang="EN">S74 and S78 buses detoured due to the
Water Main Reconstruction</Summary>
 <Description xml:lang="EN">S74 and S78 buses detoured at all
times from Arthur Kill Rd between Veterans Rd and Boscombe Av</Description>
 <Affects>
 <VehicleJourneys>
 <AffectedVehicleJourney>
 <LineRef>S74</LineRef>

FprEN 15531-2:2015 (E)

110

 <DirectionRef>1</DirectionRef>
 </AffectedVehicleJourney>
 <AffectedVehicleJourney>
 <LineRef>S74</LineRef>
 <DirectionRef>0</DirectionRef>
 </AffectedVehicleJourney>
 <AffectedVehicleJourney>
 <LineRef>S78</LineRef>
 <DirectionRef>0</DirectionRef>
 </AffectedVehicleJourney>
 <AffectedVehicleJourney>
 <LineRef>S78</LineRef>
 <DirectionRef>1</DirectionRef>
 </AffectedVehicleJourney>
 </VehicleJourneys>
 </Affects>
 <Consequences>
 <Consequence>
 <Condition>diverted</Condition>
 </Consequence>
 </Consequences>
 </PtSituationElement>
 </Situations>
 </SituationExchangeDelivery>
 </ServiceDelivery>
</Siri>

12.3.4.5 Complex Vehicle Monitoring response to return monitored journeys – JSON Example

The following code fragment shows the equivalent response translating the SIRI-VM XML document into
JSON value pairs.

{
"Siri":{
 "ServiceDelivery":{
 "ResponseTimestamp":"2012-06-15T13:40:20.884-04:00",
 "VehicleMonitoringDelivery":[
 {
 "VehicleActivity":[
 {
 "MonitoredVehicleJourney":{
 "LineRef":"S78",
 "DirectionRef":"1",
 "FramedVehicleJourneyRef":{
 "DataFrameRef":"2012-06-15",

"DatedVehicleJourneyRef":"20120408EA_079500_S78_0470_MISC_890"
 },
 "JourneyPatternRef":"S780470",
 "PublishedLineName":"S78",
 "OperatorRef":"MTA NYCT",
 "OriginRef":"805164",
 "DestinationRef":"905179",
 "DestinationName":"BRICKTOWN MALL",
 "SituationRef":[
 {
 "SituationSimpleRef":"36926"
 }
],

FprEN 15531-2:2015 (E)

111

 "Monitored":true,
 "VehicleLocation":{
 "Longitude":-74.076856,
 "Latitude":40.607764
 },
 "Bearing":227.4601,
 "ProgressRate":"normalProgress",
 "VehicleRef":"6226",
 "MonitoredCall":{
 "StopPointRef":"201092",
 "VisitNumber":1,
 "StopPointName":"HYLAN BL - DONLEY AV",
 "EstimatedDepartureTime":"2012-06-15T13:41:00-
04:00"
 },
 "OnwardCalls":{
 "OnwardCall":[
 {
 "StopPointRef":"905018",
 "VisitNumber":1,
 "StopPointName":"HYLAN BL - NARROWS
RD S",
 "EstimatedDepartureTime":"2012-06-
15T13:44:00-04:00"
 },
 {
 "StopPointRef":"201093",
 "VisitNumber":1,
 "StopPointName":"OLGA PL - POUCH
TER",
 "EstimatedDepartureTime":"2012-06-
15T13:47:00-04:00"
 }
]
 }
 },
 "RecordedAtTime":"2012-06-15T13:40:05.900-04:00"
 },
 {
 "MonitoredVehicleJourney":{
 "LineRef":"S78",
 "DirectionRef":"1",
 "FramedVehicleJourneyRef":{
 "DataFrameRef":"2012-06-15",

"DatedVehicleJourneyRef":"20120408EA_072000_S78_0470_MISC_835"
 },
 "JourneyPatternRef":"S780470",
 "PublishedLineName":"S78",
 "OperatorRef":"MTA NYCT",
 "OriginRef":"805164",
 "DestinationRef":"905179",
 "DestinationName":"BRICKTOWN MALL",
 "SituationRef":[
 {
 "SituationSimpleRef":"36926"
 }
],
 "Monitored":true,
 "VehicleLocation":{
 "Longitude":-74.189972,
 "Latitude":40.522584

FprEN 15531-2:2015 (E)

112

 },
 "Bearing":199.91507,
 "ProgressRate":"normalProgress",
 "VehicleRef":"6214",
 "MonitoredCall":{
 "StopPointRef":"201183",
 "VisitNumber":1,
 "StopPointName":"HYLAN BL - CORNELIA AV",
 "EstimatedDepartureTime":"2012-06-15T13:40:30-
04:00"
 },
 "OnwardCalls":{
 "OnwardCall":[
 {
 "StopPointRef":"201184",
 "VisitNumber":1,
 "StopPointName":"HYLAN BL - SEGUINE
AV",
 "EstimatedDepartureTime":"2012-06-
15T13:43:30-04:00"
 },
 {
 "StopPointRef":"201185",
 "VisitNumber":1,
 "StopPointName":"HYLAN BL - INEZ ST"
 "EstimatedDepartureTime":"2012-06-
15T13:46:30-04:00"
 }
]
 }
 },
 "RecordedAtTime":"2012-06-15T13:40:04.749-04:00"
 },
],
 "ResponseTimestamp":"2012-06-15T13:40:20.884-04:00",
 "ValidUntil":"2012-06-15T13:41:20.884-04:00"
 }
],
 "SituationExchangeDelivery":[
 {
 "Situations":{
 "PtSituationElement":[
 {
 "PublicationWindow":{
 "StartTime":"2012-03-26T00:00:00.000-04:00",
 "EndTime":"2012-06-29T23:59:00.000-04:00"
 },
 "Summary":"S74 and S78 buses detoured due to the Water Main
Reconstruction",
 "Description":"S74 and S78 buses detoured at all
times from Arthur Kill Rd between Veterans Rd and Boscombe Av",
 "Affects":{
 "VehicleJourneys":{
 "AffectedVehicleJourney":[
 {
 "LineRef":"S74",
 "DirectionRef":"1"
 },
 {
 "LineRef":"S74",
 "DirectionRef":"0"
 },

FprEN 15531-2:2015 (E)

113

 {
 "LineRef":"S78",
 "DirectionRef":"0"
 },
 {
 "LineRef":"S78",
 "DirectionRef":"1"
 }
]
 }
 },
 "Consequences":{
 "Consequence":[
 {
 "Condition":"diverted"
 }
]
 },
 "SituationNumber":"36926"
 }
]
 }
 }
]
 }
}
}

12.3.5 SIRI-SM Stop Monitoring failed request with Exception – SIRI LITE Examples

12.3.5.1 General

The following example shows a JSON response reporting an error condition on a SIRI-SM
StopMonitoringRequest to fetch departures request for a stop.

12.3.5.2 Simple Stop Monitoring response to return exceptions – XML Example

The following code fragment shows the XML document with an error condition for a SIRI XML response for a
SIRI-SM service.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Siri xmlns:ns2="http://www.ifopt.org.uk/acsb"
xmlns:ns4="http://datex2.eu/schema/1_0/1_0"
xmlns:ns3="http://www.ifopt.org.uk/ifopt" xmlns="http://www.siri.org.uk/siri">
 <ServiceDelivery version=”2.0”>
 <ResponseTimestamp>2012-06-15T14:32:27.962-04:00</ResponseTimestamp>
 <StopMonitoringDelivery>
 <ResponseTimestamp>2012-06-15T14:32:27.962-04:00</ResponseTimestamp>
 <ErrorCondition>
 <OtherError>
 <ErrorText>No such stop: XYZ</ErrorText>
 </OtherError>
 <Description> No such stop: XYZ </Description>
 </ErrorCondition>
 </StopMonitoringDelivery>
 </ServiceDelivery>
</Siri>

http://www.ifopt.org.uk/acsb
http://datex2.eu/schema/1_0/1_0
http://www.ifopt.org.uk/ifopt
http://www.siri.org.uk/siri

FprEN 15531-2:2015 (E)

114

12.3.5.3 Simple Stop Monitoring response to return exceptions – JSON Example

The following code fragment shows the equivalent response translating the SIRI-SM XML document with an
error condition into JSON value pairs.

{
 "Siri":{
 "ServiceDelivery":{
 "ResponseTimestamp":"2012-06-15T14:32:38.712-04:00",
 "StopMonitoringDelivery":[
 {
 "ResponseTimestamp":"2012-06-15T14:32:38.712-04:00",
 "ErrorCondition":{
 "OtherError":{
 "ErrorText":"No such stop: XYZ"
 },
 "Description":"No such stop: XYZ"
 }
 }
]
 }
 }
}

12.4 Mapping of SIRI XML to Alternative encodings

12.4.1 Use of syntactic features of alternative rendering formats

A guiding principle is that a rendering should be chosen that can be produced unambiguously and simply from
the XML, and that is as easy as possible to understand. For example:

1) When JSON is used, the root element of the JSON response should be a JSON object with the sole
member “Siri” (just as the root element of any XML response is the <Siri> element);

2) When JSON is used, the nesting of repeated elements should be used, rather than arrays;

12.4.2 Mapping of SIRI data types to alternative encodings

Data types are normally rendered as in the normal SIRI XML. With one optional variant: a further transform
parameter #TimeFormat=Unix option may be supported to make the handling of dates and durations on
devices easier.

http://www.vbb.de/siri/2.0/stop-monitoring.json?MonitoringRef=4565
&StopMonitoringDetailLevel=calls&#TimeFormat=Unix

If #TimeFormat=Unix is chosen:

— Timestamps (xsd:dateTime) are given in Unix time, defined as the number of seconds elapsed since
midnight Coordinated Universal Time (UTC) of Thursday, January 1, 1970 (Unix times are defined, but
negative, before that date), not counting leap seconds;

— Durations (xsd:duration) are given in seconds.

http://www.vbb.de/siri/2.0/stop-monitoring.json?MonitoringRef=4565

FprEN 15531-2:2015 (E)

115

12.5 Recommendations for the use of SIRI Simple Web Services

12.5.1 General

SIRI is an extensive standard, many aspects of which are optional; some parts of it are more applicable to end
user (i.e. web and mobile) passenger information applications than others. This clause provides basic
guidance on implementing SIRI Lite so as to maximize the benefit passenger information applications.

12.5.2 Services useful for device Passenger Information Services

Of the many SIRI functional services, the following are most likely to be used by end user applications:
StopMonitoring, VehicleMonitoring, SituationExchange. Any SIRI implementation of the simple web
services should strive to implement these three services, whenever possible (assuming the data underlying
the services is available).

The following two SIRI discovery services are also useful to allow applications to obtain reference data that is
synchronised with that used by the SIRI Functional services: StopPointsRequest and LinesRequest.

12.5.3 Response filtering

For maximum efficiency, support the parameters that allow the Consumer to limit the amount, type and detail
of data returned:

— Allow the client to filter, at minimum, by OperatorRef (in a multi-operator system), LineRef,
DirectionRef, MonitoringRef (for StopMonitoring), and VehicleRef (for VehicleMonitoring);

— Allow the client to set the detail of responses with *DetailLevel={normal, | calls};

— Allow the client to set quantity moderators, e.g. MaxNumberOfCalls.Onwards, and
MaximumStopVisits;

12.5.4 Incorporation of reference data in responses

SIRI LITE provides data that can be delivered straight to end-users: responses shall include stop names and
other explanatory data from the reference data sets so that the data is self-explanatory and does not need
further integration with other reference datasets in order to be understandable by users.

— Include human-readable names for stops (StopPointName in OnwardCall), lines
(PublishedLineName), destinations (DestinationName), etc.

— When human-readable names are not possible or desired (e.g. *Ref), use identifiers that are consistent
with other static descriptions (e.g. GTFS, TransXChange, NeTEx) that are available to application
developers.

12.5.5 Multiple functional service deliveries in the same response

When applicable, the ServiceDelivery returned in responses for one type of request should have supporting
responses of other types as necessary, to minimize the number of calls required from an end-user application
to obtain a complete set of data suitable for end-user presentation. For example, a StopMonitoringDelivery
returned in response to a StopMonitoringRequest might be accompanied by a SituationExchangeDelivery
containing incident or service diversion information for the stops and/or lines covered by that
StopMonitoringDelivery.

SIRI v2.0 includes an explicit parameter IncludeSituations, which can be used to request this.

FprEN 15531-2:2015 (E)

116

12.5.6 Support a choice of response encodings

Wherever possible, provide a variety of response encodings (a suggested minimum would be XML and JSON)
in order to lower the barrier-to-entry for developers. Doing so is less of a technical requirement, and more of a
strategy to complement skills a developer may or may not have, or the frameworks supported by different
development platforms.

12.5.7 Provide reporting identifiers

It is useful for a service provider to be able to track requests by application and by user in order to be able to
analyse traffic patterns and better understand user needs.

The authentication details may be used to track requests by account using the AccountId. This will typically
be common to all the users of a particular application or applications provided by a particular application
provider.

To support the tracking of requests by individual users, the RequestorRef may be used to hold an
anonymised token identifying the user. This is populated by the individual device. The application should ask
the user for consent before enabling this feature.

13 Common SIRI elements & Data Types

13.1 General

SIRI makes use of a number of reference data elements (for example LOGICAL DISPLAYs, LINEs etc.) that
typically will have been exchanged previously between systems using asynchronous services. The
Transmodel based NeTEx data model shows the relationship of these elements to the underlying public
transport information system elements. The NeTEx data format may be used to exchange such elements.

Table 56 SIRI – NETEX equivalents

SIRI Reference / Element Transmodel / NeTEx entity Note

BlockRef BLOCK

Call CALL

ConnectionLinkRef CONNECTION

CourseOfJourneyRef COURSE OF JOURNEYS

DatedVehicleJourneyRef /
DatedVehicleJourney,
TargetedVehicleJourney

DATED VEHICLE JOURNEY,
NORMAL DATED VEHICLE
JOURNEY

DestinationDisplay DESTINATION DISPLAY Well defined name of a destination used on
vehicle and sign displays.

DirectionRef / Direction DIRECTION

FacilityRef EQUIPMENT, FACILITY

InterchangeRef /
ServiceJourneyInterchange

SERVICE JOURNEY
INTERCHANGE

JourneyPartRef JOURNEY PART

JourneyPatternRef JOURNEY PATTERN

LineRef / Line LINE

MonitoringRef / LOGICAL DISPLAY | NeTEx LOGICAL DISPLAY relates to a

FprEN 15531-2:2015 (E)

117

MonitoringPoint SCHEDULED STOP POINT SCHEDULED STOP POINT and relevant
JOURNEY PATTERNs

MonitoredVehicleJourney MONITORED VEHICLE
JOURNEY

A VEHICLE JOURNEY that is being
monitored

OperatorRef / Operator OPERATOR, AUTHORITY

SituationRef SITUATION

StopPointRef / StopPoint SCHEDULED STOP POINT See also SIRI MonitoringPoint

TimetableVersionRef /
Timetable

TIMETABLE FRAME NeTEx TIMETABLE FRAME groups a
version of a timetable.

TrainNumberRef TRAIN NUMBER UIC train number

VehicleMode VEHICLE MODE Enumerated values only

VehicleRef VEHICLE

13.2 Introduction

Some elements and groups of elements are shared by many different SIRI Functional Service Deliveries. This
clause describes some common definitions that are referenced by services in SIRI Functional Service
Specifications (Part3, Part4, Part5).

13.3 Base Data Types

13.3.1 W3C Simple Types

SIRI uses a number of standard W3C XML data types.

Table 57 — W3C XML simple data types used in SIR

Data Type

xsd:anyType

xsd:anyURI

xsd:base64Binary

xsd:boolean

xsd:date

xsd:dateTime

xsd:decimal

xsd:duration

xsd:float

xsd:integer

xsd:language

xsd:normalizedString

xsd:nonNegativeInteger

xsd:NMTOKEN

xsd:NMTOKENS

xsd:positiveInteger

FprEN 15531-2:2015 (E)

118

xsd:string

xsd:time

13.3.2 SIRI Simple Types

SIRI defines a number of common simple data types.

Table 58 — SIRI simple data types used in SIRI

Data Type Description Example

AbsoluteBearingType Bearing in compass degrees (0-360).
North equates to 0 degrees, while east
is 90 degrees.

<Bearing>180</Bearing>

DurationType Limited version of xsd:duration that
allows for precise time arithmetic. Only
Month, Day, Hour, Minute Second or
Millisecond terms shall be used.

<Delay>-PT1H2M</Delay>-

EmailAddressType Email address type. <Email>-info@siri.org.uk</Email>-

EmptyType Type that has no contained value. <All/>

LongitudeTyype Longitude from Greenwich Meridian
180° (East) to +180° (West). Decimal
degrees.

<Longitude>2.356</Longitude>

LatitudeType Latitude from equator. -90° (South) to
+90° (North). Decimal degrees.

<Latitude>56.356.</Latitude >

PopulatedStringType A restriction of W3C XML Schema's
string that requires at least one
character of text.

<Name>Paris</Name>

PositiveDurationType Limited version of duration. Has to be
positive.

<TransferTime>PT1H2M</TransferTime>

PhoneType International phone number. <Phone>+41675601</Phone>

VersionString A string indicating the version of a SIRI
data structure.

<Version>2.1</Version>

13.3.3 NationalLanguageStringStructure — Element

Most text elements in SIRI may be specified in a designated language. If no language is specified the default
language from the context should be assumed

NationalLanguageStringStructure 0:1 +Structure A populated string in a designated national
language.

 lang 0:1 xml:lang Language for string ISO language code

13.4 Shared Elements & Structures

13.4.1 FramedVehicleJourneyRef — Element

The FramedVehicleJourneyRef identifies a DATED VEHICLE JOURNEY within the data horizon of the
referencing system. It may be that two data systems that share information about connecting journeys use the
same VehicleJourneyCode for different journeys in their respective systems. To ensure that the journeys can
be uniquely identifier a data frame reference can be used as a qualifier. In practice the OperationalDayType
may be used as a unique qualifier of the data frame.

FprEN 15531-2:2015 (E)

119

Table 59 — FramedVehicleJourneyRef

FramedVehicleJourn
eyRef

0:1 +Structure A reference to the DATED VEHICLE JOURNEY that the
vehicle is making. Unique with the data horizon of the service.

 DataFrameRef 0:1 DataFrameQualifier Unique identifier of data frame within participant service. Used
to ensure that the DatedVehicleJourneyRef is unique with the
data horizon of the producer. Often the OperationalDayType
is used for this purpose.

DatedVehicleJou
rneyRef

0:1 →DatedVehicleJou
rneyCode

A reference to the DATED VEHICLE JOURNEY that the
VEHICLE is making.

13.4.2 Location — Element

The Location structure provides a standard way of defining a geospatial coordinate, for example a vehicle
position. When Location is used for a vehicle, for example for a VehicleLocation, the front of the vehicle
shall be taken as the measurement point.

Table 60 — Location

LocationStructure 0:1 +Structure Geospatial Location

Attributes

id 0:1 xsd:NMTOKEN Arbitrary identifier associated with the point.

srsName 0:1 xsd:string Identifier of the GML coordinate system used in
any Coordinates parameter. Defaults to overall
value for document.

Coordina
tes

 choice Location in one of two alternate formats.

a Longitude –1:1 LongitudeType Longitude from Greenwich Meridian.180° (East) to
+180° (West). Decimal degrees. e.g. 2,356.

Latitude –1:1 LatitudeType Latitude from equator. -90° (South) to +90°
(North). Decimal degrees. e.g. 56,356.

b Coordinates –1:1 xsd:string Coordinates of points in a GML compatible
format, as indicated by srsName attribute.

 Precision 0:1 DistanceType Precision for point measurement. In meters.

13.4.3 Error — Element

13.4.3.1 General

The xxxError structure provides a standard way of representing a specific error code that can be used for
fault or exception handling. Error codes are explicitly reified as elements, for example
CapabilityNotSupportedError, AccessNotAllowedError, NoInfoForTopicError, etc.

Table 61 — Error Code

ErrorStructure 0:1 +Structure Error Type.

 ErrorNumber 0:1 xsd:integer Number for error type (+SIRI v2.0)

 ErrorText 0:1 xsd:string Additional description of error.

FprEN 15531-2:2015 (E)

120

13.4.3.2 Error Conditions — Elements

Table 62 — Error Conditions

The following specific error conditions can arise – these are all specialisations of Error.

Error Explanation From

AccessNotAllowedError Requestor is not authorised to the service or data
requested.

AllowedResourceUsageExceededError Valid request was made but request would exceed the
permitted resource usage of the client.

BeyondDataHorizon Data period or subscription period is outside of period
covered by service.

CapabilityNotSupportedError Service does not support the requested capability.

EndpointDeniedAccessError Endpoint to which a message is to be distributed did not
allow access by the client.

+v2.0

EndpointNotAvailableAccessError Recipient of a message to be distributed is not available. +v2.0

InvalidDataReferencesError Request contains references to identifiers that are not
known.

+v2.0

NoInfoForTopicError" type Valid request was made but service does not hold any
data for the requested topic expression.

OtherError Error type other than the well-defined codes.

ParametersIgnoredError Request contained parameters that were not supported
by the producer. A response has been provided but some
parameters have been ignored.

+v2.0

ServiceNotAvailableError Functional service is not available to use (but it is still
capable of giving this response).

UnknownEndpointError Recipient for a message to be distributed is unknown. +v2.0

UnknownExtensionsError Request contained extensions that were not supported by
the producer. A response has been provided but some or
all extensions have been ignored.

UnknownParticipantError Recipient for a message to be distributed is unknown. +v2.0

UnknownSubscriberError Subscriber not found.

UnknownSubscriptionError Subscription not found.

UnapprovedKeyAccessError Recipient of a message to be distributed is not available. +v2.0

13.5 Shared groups of elements

13.5.1 ServiceInfoGroup — Group

The ServiceInfoGroup provides optional data about descriptive attributes of a VEHICLE JOURNEY.

FprEN 15531-2:2015 (E)

121

Table 63 — ServiceInfoGroup — Elements

Servic
e Info

OperatorRef 0:1 →OperatorCode OPERATOR of journey.

ProductCategoryRef 0:1 →ProductCategory
Code

PRODUCT CATEGORY of journey – classifies,
for example; express, local.

ServiceFeatureRef 0:* →ServiceFeatureC
ode

Classification of service into arbitrary Service
Features, e.g. school bus.

VehicleFeatureRef 0:* →VehicleFeatureC
ode

Feature of VEHICLE. E.g.
‘suitableForWheelChairs’.

13.5.2 JourneyInfoGroup — Group

The JourneyInfoGroup provides optional data about a JOURNEY of any sort.

Table 64 — JourneyInfoGroup — Elements

Journey
Info

VehicleJourneyNam
e

0:* NLString Name of VEHICLE JOURNEY.

(One per language (Unbounded 0:* since +SIRI 2.0).

JourneyNote 0:* NLString Additional descriptive text associated with journey.

One per language (Unbounded 0:* since +SIRI 2.0).

PublicContact 0:1 +Structure Contact details for use by members of public. +SIRI
v2.0

 PhoneNumber 0:1 PhoneType Phone number for Public to contact OPERATOR of
journey. +SIRI v2.0

 Url 0:1 xsd:anyUri Public URL to contact OPERATOR of journey. +SIRI
v2.0

OperationsContact 0:1 +Structure Contact details for use by operational staff. +SIRI
v2.0

 PhoneNumber 0:1 PhoneType Phone number for operational contact. Not for Public
use. +SIRI v2.0

 Url 0:1 xsd:anyUri URL number for operational contact. Not for Public
use. +SIRI v2.0

13.5.3 VehicleJourneyInfoGroup — Group

The VehicleJourneyInfoGroup provides optional data about a VEHICLE JOURNEY. It includes a
ServiceInfoGroup and a JourneyInfoGroup.

FprEN 15531-2:2015 (E)

122

Table 65 — VehicleJourneyInfoGroup — Elements

Service
Info

::: 0:1 ServiceInfoGroup See 12.3 ServiceInfoGroup.

Service
End
Point
Names

OriginRef 0:1 →JourneyPlaceC
ode

The identifier of the origin of the journey; used to
help identify the VEHICLE JOURNEY on arrival
boards.

OriginName 0:* NLString The name of the origin of the journey; used to help
identify the VEHICLE to the public.

One per language (Unbounded 0:* since +SIRI 2.0).

OriginShortName 0:* NLString The short name of the origin of the journey; used to
help identify the VEHICLE to the public.

(One per language (Unbounded 0:* since +SIRI 2.0).

DestinationDisplayA
tOrigin

0:* NLString DESTINATION DISPLAY name shown for journey at
the origin. +SIRI v2.0.

(One per language

Via 0:* +Structure Description of a VIA point on a journey.

 PlaceRef 0:1 →JourneyPlaceC
ode

Identifier of a VIA point of the journey.

PlaceName 0:* NLString The name of a VIA point of the journey, used to help
identify the LINE.

(One per language (Unbounded 0:* since +SIRI 2.0).

PlaceShortName 0:* * Short name of a VIA point of the journey, used to
help identify the LINE.

(One per language (Unbounded 0:* since +SIRI 2.0).

 ViaPriority 0:1 xsd:integer Relative priority to give to VIA name in displays.
1=high. Default is 2. +SIRI v2.0.

DestinationRef 0:1 →JourneyPlaceC
ode

The identifier of the destination of the journey; used
to help identify the VEHICLE to the public.

DestinationName 0:* NLString The name of the destination of the journey; used to
help identify the VEHICLE to the public.

(One per language (Unbounded 0:* since +SIRI 2.0).

DestinationShortNa
me

0:* NLString The name of the destination of the journey; used to
help identify the VEHICLE to the public.

(One per language (Unbounded 0:* since +SIRI 2.0).

OriginDisplayAtOrigi
n

0:* NLString Origin DISPLAY name shown for journey at the
destination . +SIRI v2.0.

(One per language

Journey
Info

JourneyInfo Group ::: 0:1 JourneyInfoGroup See above.

End
Times

HeadwayService 0:1 xsd:boolean Whether this is a HEADWAY INTERVAL Service,
that is one shown as operating at a prescribed
interval rather than to a fixed timetable.

OriginAimedDepartu
reTime

0:1 xsd:dateTime Timetabled departure time of VEHICLE from Origin.

DestinationAimedAr
rivalTime

0:1 xsd:dateTime Timetabled arrival time of VEHICLE at Destination.

 FirstOrLastJourney 0:1 FirstOrLastJourne
yEnumeration

Whether journey is first or last journey of day.
+SIRI v2.0.

FprEN 15531-2:2015 (E)

123

13.5.3.1 FirstOrLastJourney — Allowed values

The table below provides allowed values for FirstOrLastJourney (FirstOrLastJourneyEnumeration).

Table 66 — FirstOrLastJourney —Allowed Values (SIRI 2.0)

Value Description

unspecified Unspecified whether first or last

firstServiceOfDay Service is first of day.

lastServiceOfDay Service is last of day.

other Service is neither first nor last of day.

13.5.4 JourneyPatternInfoGroup — Group

The JourneyPatternInfoGroup provides optional data about the ROUTE and LINE of a VEHICLE JOURNEY
that originates with the JourneyPattern associated with the VehicleJourney.

Table 67 — JourneyPatternInfoGroup — Elements

Journey
Pattern
Info

JourneyPatternRef 0:1 →JourneyPatter
nCode

Identifier of JOURNEY PATTERN that journey
follows.

JourneyPatternNam
e

0:1 NLString Name or Number by which the JOURNEY
PATTERN is known to the public.

(+SIRI 2.0).

VehicleMode 0:1 VehicleMode A method of transportation such as bus, rail, etc.

RouteRef 0:1 →RouteCode Identifier of ROUTE or SERVICE PATTERN that
journey follows.

PublishedLineName 0:* NLString Name or Number by which the LINE is known to the
public.

One per language (Unbounded 0:* since +SIRI 2.0).

GroupOfLinesRef 0:1 →GroupOfLines
Code

Identifier of GROUP OF LINEs to which service
belongs (+SIRI V2.0)

DirectionName 0:* NLString Name of the relative direction the VEHICLE is
running along the LINE, for example, "inbound" or
"outbound”.

One per language (Unbounded 0:* since +SIRI 2.0).

ExternalLineRef 0:1 →LineCode Alternative identifier of LINE that an external system
may associate with journey.

FprEN 15531-2:2015 (E)

124

13.5.4.1 VehicleMode — Allowed values

The table below provides the allowed values for VehicleMode (VehicleModeEnumeration).

Table 68 — VehicleMode — Allowed Values (SIRI 2.0)

Value Description NeTEx
Mode

air Air transport Air

bus Bus transport Bus

coach Coach transport Coach

ferry Ferry transport Ferry

metro Metro transport Metro

rail Rail transport Rail

tram Tram transport Tram

undergro
und

Metro –
underground

Metro:
Submode
undergou
nd

13.5.5 DisruptionGroup — Group

13.5.5.1 General

The DisruptionGroup provides optional data about the real-time disruptions of a VEHICLE JOURNEY or
stop, or the EQUIPMENT or facilities associated with it. The group can include a reference to a SITUATION
that can be used to associate the disrupted element with a structured incident description, fetched separately
using the SIRI-SX service (See SIRI Part 5).

Table 69 — DisruptionGroup — Elements

Disrputio
n

FacilityConditionEle
ment

0:1 +Structure Information about a change of Equipment
availability at stop that may affect access or use of
the Facility. See SIRI-FM Part 4 for further details.

FacilityC
hange

FacilityChangeElem
ent

0:1 +Structure Information about a change of EQUIPMENT
availability at stop that may affect access or use.
See below

Situation SituationRef 0:* →SituationCode Reference to a SITUATION associated with the
element. See SIRI-SX Part 5 for further details.

13.5.5.2 FacilityChangeElement — Element

The FacilityChangeElement provides optional data about the real-time changes to a piece of EQUIPMENT
at a stop or on a VEHICLE. The causes and consequence of the equipment change can be further explained
by structured SITUATION description (See SIRI-SX Part 5), referenced by a situation which can be used to tie
the element together with a structured incident description that further, and which can be fetched separately
with the SIRI-SX service.

FprEN 15531-2:2015 (E)

125

Table 70 — FacilityChangeElement — Elements

FacilityChangeElement

+Structure Information about a change of EQUIPMENT
availability at stop that may affect access or use.

Equipme
nt

EquipmentAvailabilit
y

0:1 +Structure Availability change for EQUIPMENT item.

 EquipmentRef 0:1 →EquipmentCode Identifier of the EQUIPMENT.

 Description 0:* NLString Description of EQUIPMENT.

(One per language (Unbounded 0:* since +SIRI
2.0).

 EquipmentStatus 1:1 EquipmentStatusEnum Status of the EQUIPMENT availability.
Enumeration. Default is ‘notAvailable’.

unknown | available | notAvailable

 Description 0:* NLString Description of EQUIPMENT.

(One per language (Unbounded 0:* since +SIRI
2.0).

 ValidityPeriod 0:1 +Structure Period for which Status Change applies. If
omitted, indefinite period.

 StartTime 1:1 xsd:dateTime The (inclusive) start time stamp.

 EndTime 0:1 xsd:dateTime The (inclusive) end time stamp. If omitted, the
range end is open-ended, that is, it should be
interpreted as "forever".

 EquipmentTypeR
ef

0:1 →EquipmentTypeCode Reference to EQUIPMENT type identifier.

 Features 0:1 +Structure Service Features associated with EQUIPMENT.

 Feature 1:* ServiceFeature Service or Stop features associated with
equipment. Recommended values based on
TPEG are given in SIRI documentation and
enumerated in the siri_facilities package.

Situation SituationRef 0:* →SituationCode Reference to a Situation associated with the
FacilityChangeElement that explains the
equipment change. See SIRI-SX Part 5 for further
details.

Mobility
Effect

MobilityDisruption 0:1 +Structure Effect of change on impaired access users.

 MobilityImpaired
Access

0:1 xsd:boolean Whether stop or service is accessible to mobility
impaired users. This may be further qualified by
one ore more MobilityFacility instances to specify
which types of mobility access are available (true)
or not available (false). For example
'suitableForWheelChair', or 'stepFreeAccess'.

 MobilityFacility 0:1 MobilityFacilityEnum Classification of Mobility Facility type - Based on
TPEG pti23.

suitableForWheelChairs | lowFloor |
stepFreeAccess | boardingAssistance |
onboardAssistance |
unaccompaniedMinorAssistance |
audioInformation | visualInformation |
displaysForVisuallyImpaired |
audioForHearingImpaired | tactileEdgePlatforms

FprEN 15531-2:2015 (E)

126

13.5.5.3 EquipmentStatus — Allowed values

The table below provides allowed values for EquipmentStatus (ProgressRateEnumeration)

Table 71 — EquipmentStatus —Allowed Values

Value Description

unknown Status is unknown

available Status is available

notAvailable Status is not
available

13.5.5.4 MobilityFacility — Allowed values

The table below provides allowed values for MobilityFacility (MobilityFacility Enumeration)

Table 72 — MobilityFacility —Allowed Values

Value Description

suitableForWheelChairs Suitable for Wheelchairs

lowFloors Low Floors

stepFreeAccess Step Free Access

boardingAssistance Boarding assistance available.

onboardAssistance On-board assistance available.

unaccompaniedMinorAssista
nce

Unaccompanied Minor Assistance

audioInformation Audio Information available.

visualInformation visual Information available.

displaysForVisuallyImpaired Special displays for the Visually
Impaired

audioForHearingImpairedt Audio facilities for the Hearing
Impaired

actileEdgePlatform Tactile Edge on Platforms

audioForHearingImpaired Audio for Hearing impaired

tactileEdgePlatform Tactile Edge Platform

13.5.6 JourneyProgressGroup — Group

The JourneyProgressGroup provides optional data about the real-time status of a vehicle journey of a
MonitoredVehicleJourney.

FprEN 15531-2:2015 (E)

127

Table 73 — JourneyProgressGroup — Elements

Status Monitored 0:1 xsd:boolean Whether there is real-time information available
for journey, if not present, not known.

MonitoringEr
ror

0:1 MonitoringErrorEnum If Monitored is false, an optional reason for non-
availability of real-time data.

GPS | GPRS | Radio

Progress
Data
Quality

InCongestion 0:1 xsd:boolean Whether the vehicle is in congestion. If not,
present, not known.

InPanic 0:1 xsd:boolean Whether the vehicle alarm is on. Likely to indicate
unpredictable progress. If not, present, false.

PredictionIna
ccurate

0:1 xsd:boolean Whether the prediction should be judged as
inaccurate.

DataSource 0:1 xsd:string System originating real-time data, if other than
producer. Can be used to make judgements of
relative quality and accuracy of a proxied source
compared to other feeds.

ConfidenceL
evel

0:1 QualityIndexEnum A confidence level associated with data.

certain | veryReliable | reliable | probablyReliable |
unconfirmed

Progress
Data

VehicleLocati
on

0:1 LocationStructure Current location of VEHICLE. Measured to front of
bus.

Bearing 0:1 AbsoluteBearingType Bearing in degrees in which VEHICLE is heading.

ProgressRate 0:1 ProgressRateEnum Classification of the rate of progress of VEHICLE.

noProgress | slowProgress | normalProgress |
fastProgress | unknown

Velocity 0:1 VelocityType Velocity of vehicle in specified units (See
ServiceRequestContext). Either actual speed or
average speed may be used. Default units are
metres per second. +SIRI v2.0.

Occupancy 0:1 OccupancyEnum How full VEHICLE is. Enumeration. If omitted, not
known.

Delay 0:1 DurationType Delay to a precision in seconds. Early times are
shown as negative values.

ProgressStat
us

0:1 NatuaralLanguageStringStr
ucture

A non-displayable status describing the running of
this VEHICLE.

 VehicleStatu
s

0:1 VehicleStatusEnum A classification of the progress state of the
VEHICLE JOURNEY. +SIRI 2.0

expected | notExpected | cancelled | assigned |
signedOn | atOrigin | inProgress | aborted |
offRoute | completed | assumedCompleted |
notRun

13.5.6.1 MonitoringError — Allowed values

The table below provides allowed values for MonitoringError (MonitoringErrorEnumeration).

FprEN 15531-2:2015 (E)

128

Table 74 — MonitoringError —Allowed Values

Value Description

GPS Failure is in GPS locating
system

GPRS Failure is in GPRS
connection

Radio Failure is in Radio
connection

13.5.6.2 ConfidenceLevel — Allowed values

The table below provides allowed values for ConfidenceLevel (QualityIndexEnumeration).

Table 75 — ConfidenceLevel —Allowed Values

Value Description

certain Data is certain.

veryReliable Data is very reliable
.

reliable Data is reliable.

probablyRelia
ble

Data is probably
reliable.

unconfirmed Data is unconfirmed.

13.5.6.3 ProgressRate — Allowed values

The table below provides allowed values for ProgressRate (ProgressRateEnumeration)

Table 76 — ProgressRate —Allowed Values

Value Description

noProgress Vehicle is not moving.

slowProgres
s

Vehicle is making slower than normal
progress.

normalProgr
ess

Vehicle is making normal progress.

fastProgress Vehicle is making better than normal
progress.

unknown Rate of progress is unknown.

13.5.6.4 Occupancy — Allowed values

The table below provides allowed values for Occupancy (OccupancyEnumeration)

FprEN 15531-2:2015 (E)

129

Table 77 — Occupancy —Allowed Values

Value Description

full Service is full.

standingAvailab
le

Standing space is
available.

seatsAvailable Seats are available.

13.5.6.5 CallStatus — Allowed values

The table below provides allowed values for CallStatus (CallStatusEnumeration)

Table 78 — CallStatus —Allowed Values

Value Description

onTime Service is on time.

early Service is earlier than
expected.

delayed Service is delayed.

cancelled Service is cancelled.

arrived Service has arrived.

Departed Service has departed.

Missed Arrival or departure was not
recorded at this stop but the
service has subsequently
been detected further down
the route.

noReport There is no data available on
the service status.

13.5.6.6 VehicleStatus — Allowed values

The table below provides allowed values for VehicleStatus (VehicleStatusEnumeration)

Table 79 — VehicleStatus —Allowed Values

Value Description Allowed transitions to

notExpecte
d

A vehicle journey that is scheduled to be run only if ordered and
has not yet been ordered.

expected, assigned, not
run

expected The VEHICLE JOURNEY is scheduled to run. signedOn, assigned,
cancelled,
assumedCompleted

assigned There is a vehicle assigned to run the dated vehicle journey.
Assignments can be made in advance by the operations control
to allocate a specific vehicle to work certain dated vehicle
journeys.

assigned, cancelled

cancelled A VEHICLE JOURNEY that was scheduled to run has been
cancelled.

expected

FprEN 15531-2:2015 (E)

130

signedOn The assignment of a vehicle journey has been confirmed by the
driver.

atOrigin, inProgress

atOrigin Service has arrived at the first stop. inProgress, aborted

inProgress Service has departed from the first or later stop. completed, offRoute,
aborted

offRoute System has detected that vehicle is not following the expected. inProgress, aborted

aborted A journey that has already been started has been aborted, e.g.
because of a breakdown. If an aborted journey is resumed, a new
vehicle journey instance will be created.

completed Journey has been completed

assumedC
ompleted

If an expected vehicle journey is not cancelled and never
becomes in progress, at some point in time be considered as
assumed completed.

notRun If a not expected dated vehicle journey is never run, it should at
some point in time be considered as not run. This could for
instance be the time when the deadline for ordering

13.6 OperationalBlockGroup — Group

The OperationalBlockGroup provides optional data to identify operational entities associated with a vehicle
journey.

Table 80 — OperationalBlockGroup — Elements

Operational
Block group

BlockRef 0:1 →BlockCode BLOCK that VEHICLE is running.

CourseOfJourneyRef 0:1 →RunCode Run that VEHICLE is running.

13.7 OperationalInfoGroup — Group

The OperationalInfoGroup provides optional data to identify operational entities associated with a vehicle
making a journey. It includes an OperationalBlockGroup.

Table 81 — OperationalInfoGroup — Elements

Operational
Info group

::: 0:1 Operational BlockGroup See Operational BlockGroup Above.

 VehicleJou
rneyRef

0:1 →VehicleJourneyCode Reference to VEHICLE JOURNEY

 VehicleRef 0:1 →VehicleCode A reference to the specific VEHICLE making a
journey.

 Additional
VehicleJou
rneyRef

0:* →VehicleCode Refercence to a other VEHICLE Journeys (+SIRI
v2.0)

 DriverRef 0:1 →DriverCode A reference to the DRIVER or Crew currently logged
in to operate a monitored VEHICLE. May be omitted
if real-time data is not available - i.e. it is timetabled
data. +SIRI v2.0

 DriverNam
e

0:1 Xsd:normalizedString The name of the Driver or Crew +SIRI v2.0

FprEN 15531-2:2015 (E)

131

Bibliography

[1] ISO 24531:2013, Intelligent transport systems — System architecture, taxonomy and terminology —
Using XML in ITS standards, data registries and data dictionaries

[2] EN 12896, Road transport and traffic telematics - Public transport - Reference data model.

[3] EN 28701, Intelligent transport systems - Public transport - Identification of Fixed Objects in Public
Transport (IFOPT)

[4] CEN/TS 16614-1:2014, NeTEx — Network and Timetable Exchange — Part 1: Public transport
network topology exchange format

[5] CEN/TS 16614-2:2014, NeTEx — Network and Timetable Exchange — Part 2: Network Timing
Information

[6] WSDL 11vs20, available from: http://en.wikipedia.org/wiki/File:WSDL_11vs20.png

http://en.wikipedia.org/wiki/File:WSDL_11vs20.png

	Contents Page
	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and abbreviations
	5 Common communication aspects
	5.1 Data Exchange Patterns of Interaction
	5.1.1 Introduction
	5.1.2 Request/Response Pattern

	Figure 1 — Request / Response Interaction
	5.1.3 Publish/Subscribe Pattern

	Figure 2 — Simple Publish/Subscribe Interaction
	5.1.4 Publish/Subscribe with Broker Pattern

	Figure 3 — Brokered Publish/Subscribe Interaction
	5.1.5 Request/Response – Compound Requests

	Figure 4 — Request/Response: Compound Requests
	5.1.6 Publish/Subscribe – Compound Subscriptions

	Figure 5 — Publish/Subscribe: Compound Subscriptions
	5.2 Delivery Patterns
	5.2.1 Introduction
	5.2.2 Direct Delivery

	Figure 6 — One Step Direct Delivery
	5.2.3 Fetched Delivery

	Figure 7 — Fetched Delivery
	Figure 8 — Fetched Delivery for Publish/Subscribe
	5.2.4 Data Horizon for Fetched Delivery

	Figure 9 — Fetched Delivery for Request/Response
	5.2.5 Get Current Message
	5.2.6 Multipart Despatch of a Delivery

	Figure 10 — Multipart Delivery
	5.2.7 Multipart Despatch of a Fetched Delivery – MoreData

	Figure 11 — Fetched Multipart Delivery
	5.3 Mediation Behaviour
	5.3.1 Introduction
	5.3.2 Mediation Behaviour – Maintaining Subscription Last Updated State

	Figure 12 — Mediation: Update Tracking and sensitivity threshold for Direct Delivery
	Figure 13 — Mediation: Handling Fetched Delivery Latencies
	5.3.3 Mediation Behaviour – Subscription Filters

	Figure 14 — Mediation: Subscription Filter
	5.4 Recovery Considerations for Publish Subscribe
	5.4.1 Introduction
	5.4.2 Check Status – Polling

	Figure 15 — Check Status — UML Sequence
	5.4.3 Heartbeat – Pinging

	Figure 16 — Heartbeat Message — UML Sequence
	5.4.4 Degrees of Failure
	5.4.5 Detecting a Failure of the Producer
	5.4.5.1 Detecting a Failure Using Check Status

	Figure 17 — Check Status with Recovery & Re-subscribe — UML Sequence
	5.4.5.2 Detecting a Failure Using Heartbeat

	Figure 18 — Heartbeat Monitoring – Loss of Service — UML Sequence
	Figure 19 — Heartbeat Monitoring – Interruption of Service — UML Sequence
	5.4.6 Detecting a Failure of the Consumer
	5.5 Recovery Considerations for Direct Delivery

	Figure 20 — Robust Direct Delivery — UML Sequence
	5.6 Request Parameters and Interactions

	Table 1 — SIRI Request and Subscription Parameters
	Table 2 — Topics and Policies for SIRI Functional Service Types
	5.7 Error Conditions for Requests

	Table 3 — System and Application Error Conditions
	Table 4 — Application Error Conditions Related to Request Parameters
	5.8 Versioning
	5.8.1 Introduction
	5.8.2 The Overall SIRI Framework Version Level
	5.8.3 The SIRI Functional Service Type Version Level

	5.9 Access Controls: Security and Authentication
	5.9.1 Introduction
	5.9.2 System Mechanisms External to SIRI Messages
	5.9.2.1 General
	5.9.2.2 Authentication Key (+SIRI v2.0)
	5.9.2.3 Application Level Authentication
	5.9.2.4 The Access Permission Matrix
	5.9.2.5 Request Authentication

	5.10 Service Discovery
	5.10.1 Introduction
	5.10.2 Discovery of Servers that Support SIRI Services
	5.10.3 Discovery of the Capabilities of a SIRI Server
	5.10.4 Discovery of the Coverage of a Given SIRI Functional Service

	Table 5 — SIRI Discovery Service Matrix
	5.11 Capability Matrix
	5.11.1 Introduction
	5.11.2 SIRI General Capabilities

	Table 6 — SIRI General Capabilities
	6 Request/Response
	6.1 Making a Direct Request
	6.1.1 Introduction

	Table 7 — SIRI Request Delivery Types
	6.1.2 ServiceRequest Message — Element

	Table 8 — ServiceRequest — Attributes
	6.1.3 The ServiceRequestContext — Element
	6.1.3.1 General

	Table 9 — ServiceRequestContext Parameters
	6.1.3.2 DeliveryMethod — Allowed values

	Table 10 — DeliveryMethod —Allowed Values (SIRI 2.0)
	6.1.3.3 AllowedPredictors — Allowed values

	Table 11 — AllowedPredictors —Allowed Values (SIRI 2.0)
	6.1.4 Common Properties of ServiceRequest Messages — Element

	Table 12 — SIRI Functional Service Common Request — Attributes
	6.1.5 ServiceRequest — Example
	6.1.6 Access Controls on a Request
	6.2 Receiving a Data Delivery
	6.2.1 Introduction

	Table 13 — Delivery Content Elements
	6.2.2 ServiceDelivery
	6.2.2.1 ServiceDelivery— Element

	Table 14 — ServiceDelivery— Attributes
	6.2.2.2 Common Properties of SIRI Functional Service Delivery Messages

	Table 15 — SIRI Function Service xxxDelivery— Attributes
	6.2.2.3 ServiceDelivery — Example

	7 Subscriptions
	7.1 Setting up Subscriptions
	7.1.1 Introduction

	Table 16 — SIRI Request and Delivery Types
	7.1.2 SubscriptionRequest
	7.1.2.1 SubscriptionRequest — Element

	Table 17 — SubscriptionRequest — Attributes
	7.1.2.2 SubscriptionRequestContext — Element

	Table 18 — SubscriptionContext — Attributes
	7.1.2.3 The Common Properties of SIRI Functional Service Subscription Requests

	Table 19 — SIRI Functional Service Common Subscription — Attributes
	7.1.2.4 SubscriptionRequest — Example
	7.1.3 SubscriptionResponse
	7.1.3.1 SubscriptionResponse — Element

	Table 20 — SubscriptionResponse — Attributes
	Table 21 — ResponseStatus — Attributes
	7.1.3.2 SubscriptionResponse — Example
	7.2 Subscription Validity
	7.3 Terminating Subscriptions
	7.3.1 Introduction
	7.3.2 The TerminateSubscriptionRequest
	7.3.2.1 TerminateSubscriptionRequest — Element

	Table 22 — TerminateSubscriptionRequest — Attributes
	7.3.2.2 TerminateSubscriptionRequest — Example
	7.3.3 The TerminateSubscriptionResponse
	7.3.3.1 TerminateSubscriptionResponse — Element

	Table 23 — TerminateSubscriptionResponse — Attributes
	7.3.3.2 TerminateSubscriptionResponse — Example
	7.3.4 The SubscriptionTerminatedNotification (SIRI 2.0)
	7.3.4.1 SubscriptionTerminatedNotification — Element

	Table 24 — SubscriptionTerminatedNotification — Attributes
	7.3.4.2 SubscriptionTerminatedNotification — Example

	8 Delivering data
	8.1 Direct Delivery
	8.1.1 Introduction
	8.1.2 Acknowledging Receipt of Data (DataReceivedAcknowledgement)
	8.1.2.1 DataReceivedAcknowledgement — Element

	Table 25 — DataReceivedAcknowledgement — Attributes
	8.1.2.2 DataReceivedAcknowledgement — Example
	8.2 Fetched Delivery
	8.2.1 Introduction
	8.2.2 Signalling Data Availability (DataReadyNotification / DataReadyResponse)
	8.2.2.1 Procedure
	8.2.2.2 DataReadyNotification— Element

	Table 26 — DataReadyNotification — Attributes
	8.2.2.3 DataReadyNotification — Example
	8.2.2.4 DataReadyAcknowledgement— Element

	Table 27 — DataReadyAcknowledgement — Attributes
	8.2.2.5 DataReadyAcknowledgement — Example
	8.2.3 Polling Data (DataSupplyRequest/ServiceDelivery)
	8.2.3.1 Procedure
	8.2.3.2 DataSupplyRequest Message — Element

	Table 28 — DataSupplyRequest — Attributes
	8.2.3.3 DataSupplyRequest — Example
	8.2.3.4 ServiceDelivery Message
	8.3 Delegated Delivery +SIRI 2.0

	9 Recovery from system failure
	9.1 Introduction
	9.2 Recovery after Client Failure
	9.3 Recovery after Server Failure
	9.4 Reset after Interruption of Communication

	Table 29 — Error Statuses and Actions in Communication Failure Conditions
	9.5 Alive Handling
	9.5.1 Introduction
	9.5.2 CheckStatusRequest
	9.5.2.1 CheckStatusRequest Message — Element

	Table 30 — CheckStatusRequest — Attributes
	9.5.2.2 CheckStatusRequest — Example
	9.5.3 CheckStatusResponse
	9.5.3.1 CheckStatusResponse Message — Element

	Table 31 — CheckStatusResponse — Attributes
	9.5.3.2 CheckStatusResponse — Example
	9.5.4 HeartbeatNotification
	9.5.4.1 Heartbeat Message — Element

	Table 32 — HeartbeatNotification — Attributes
	9.5.4.2 HeartbeatNotification — Example
	9.6 Additional Failure modes for delegated delivery (+SIRI v2.0)

	10 Transport of SIRI messages
	10.1 Separation of Addressing from Transport Protocol
	10.2 Logical Endpoint Addresses
	10.2.1 Endpoint Addresses

	Table 33 — Server Logical Endpoints
	Table 34 — Client Logical Endpoints
	10.2.2 Endpoint Address — Examples

	Table 35 — Client Logical Endpoints
	10.3 Parallelism and Endpoint Addresses
	10.4 Encoding of XML messages
	10.4.1 Principles
	10.4.2 Encoding of Errors in XML
	10.4.3 Character Set
	10.4.4 Schema Packages

	Figure 21 — SIRI Schema Packages
	10.4.5 Siri.XSD – Use of XML Choice

	Figure 22 — Example for XML choice
	10.4.6 SiriSG.XSD – Use of XML Substitution groups

	Figure 23 — Example: XML Substitution groups
	10.5 Use of SIRI with SOAP / WSDL
	10.5.1 Introduction
	10.5.2 Web Services
	10.5.2.1 General
	10.5.2.2 SOAP (Simple Object Access Protocol)
	10.5.2.3 WSDL (Web Services Definition Language)

	Figure 24 — WSDL 1.1 and 2.0 main concepts (source http://en.wikipedia.org/wiki/File:WSDL_11vs20.png)
	10.5.3 Use of SOAP
	10.5.4 SIRI WSDL
	10.5.4.1 SIRI WSDL Definition
	10.5.4.2 WSDL 1.1 encoding styles

	10.5.5 SIRI WSDL structure

	Table 36 — SIRI Producer functional services
	Table 37 — SIRI Producer communication management and utility services
	Table 38 — SIRI Consumer notification
	Figure 25 — SIRI SOAP Producer Document/Literal WSDL
	Figure 26 — SIRI SOAP Consumer RPC/Literal WSDL
	10.5.6 SIRI RPC WSDL
	10.5.6.1 General
	10.5.6.2 WSDL RPC Example: StopTimetable Service

	Figure 27 — SIRI SOAP WSDL GetStopTimetable detail
	10.5.6.3 SOAP Example: Monitoring Service

	Table 39 — SOAP Example: GetStopMonitoring request
	Table 40 — SOAP Example Message: GetStopMonitoring Answer
	10.5.7 SIRI Document WSDL (+SIRI v2.0)

	Table 41 — SOAP Message Structures; XSD files
	10.5.8 SIRI WSDL 2.0 (+SIRI v2.0)
	10.5.9 SIRI WSDL Status

	11 Capability Discovery Requests
	11.1 General
	11.2 Capability Request

	Table 42 — CapabilityDiscoveryRequest
	11.3 Service Capability Discovery
	11.3.1 Service Capability Discovery Request — Element

	Table 43 — SIRI Service CapabilityDiscoveryRequest — Attributes
	11.3.2 Service Capability Discovery Response — Element

	Table 44 — CapabilityDiscoveryResponse — Attributes
	11.3.3 Functional Service Capability Discovery Response — Element

	Table 45 — SIRI Common Capability Responses
	11.3.3.1 CommunicationsTransportMethod — Allowed values

	Table 46 — CommunicationsTransportMethod — Allowed Values (SIRI 2.0)
	11.3.3.2 CompressionMethod — Allowed values

	Table 47 — CompressionMethod — Allowed Values (SIRI 2.0)
	11.3.4 Service Capability Response — Example
	11.4 Functional Service Capability Permission Matrix
	11.4.1 Introduction

	Table 48 — SIRI Functional Service Common Permission — Attributes
	11.4.2 OperatorPermissions — Element

	Table 49 — OperatorPermissions — Attributes
	11.4.3 LinePermissions — Element

	Table 50 — LinePermissions — Attributes
	11.4.4 ConnectionLinkPermissions — Element

	Table 51 — ConnectionLinkPermissions — Attributes
	11.4.5 StopMonitorPermissions — Element

	Table 52 — StopMonitorPermissions — Attributes
	11.4.6 VehicleMonitorPermissions — Element

	Table 53 — VehicleMonitorPermissions — Attributes
	11.4.7 InfoChannelPermissions — Element

	Table 54 — InfoChannelPermissions — Attributes
	12 SIRI for Simple Web Services – SIRI Lite (+SIRI v2.0)
	12.1 Introduction
	12.1.1 General
	12.1.2 Existing Implementations
	12.1.3 Using SIRI-LITE services in combination
	12.1.3.1 General
	12.1.3.2 Providing real-time Stop Arrivals & Departures – Use Case for SIRI LITE
	12.1.3.3 Vehicle positions – Use Case for SIRI LITE

	12.1.4 Alternative Response Encoding

	Table 55 – Alternative Response Encodings for SIRI Simple Web Services
	12.1.5 Lossless transforms
	12.1.6 Simple transforms
	12.2 Encoding of URL Requests
	12.2.1 Complete Request Encoding in HTTP URL’s
	12.2.2 General format of SIRI Lite request URL
	12.2.3 Endpoints and Service Identification
	12.2.4 Encoding of Service Parameters on http request
	12.2.5 Naming of Request Parameters with Hierarchy
	12.2.6 Naming of Parameters with Plural Cardinality
	12.2.7 Handling of invalid request combinations
	12.2.8 Specifying the encoding of the Response

	12.3 Examples
	12.3.1 General
	12.3.2 SIRI-SM Simple Stop Monitoring request to fetch stop departures – SIRI LITE Examples
	12.3.2.1 General
	12.3.2.2 Simple Stop Monitoring request to fetch stop departures – XML Example
	12.3.2.3 Simple Stop Monitoring request to return stop departures – JSON Example
	12.3.2.4 Simple Stop Monitoring response to return stop departures – XML Example
	12.3.2.5 Simple Stop Monitoring response to return stop departures – JSON Example

	12.3.3 SIRI-VM Simple Vehicle Monitoring request to fetch vehicle positions – SIRI Lite Examples
	12.3.3.1 General
	12.3.3.2 Simple Vehicle Monitoring request to fetch vehicle positions – XML Example
	12.3.3.3 Simple Vehicle Monitoring request to fetch vehicle positions – JSON Example
	12.3.3.4 Simple Vehicle Monitoring response to return vehicle positions – XML Example
	12.3.3.5 Simple Vehicle Monitoring response to return vehicle positions – JSON Example

	12.3.4 SIRI-VM Complex Vehicle Monitoring to obtain journeys – SIRI Lite Examples
	12.3.4.1 General
	12.3.4.2 Complex Vehicle Monitoring request to fetch monitored journeys – XML Example
	12.3.4.3 Complex Vehicle Monitoring request to fetch monitored journeys – RESTful Example
	12.3.4.4 Complex Vehicle Monitoring response to return monitored journeys – XML Example
	12.3.4.5 Complex Vehicle Monitoring response to return monitored journeys – JSON Example

	12.3.5 SIRI-SM Stop Monitoring failed request with Exception – SIRI LITE Examples
	12.3.5.1 General
	12.3.5.2 Simple Stop Monitoring response to return exceptions – XML Example
	12.3.5.3 Simple Stop Monitoring response to return exceptions – JSON Example

	12.4 Mapping of SIRI XML to Alternative encodings
	12.4.1 Use of syntactic features of alternative rendering formats
	12.4.2 Mapping of SIRI data types to alternative encodings

	12.5 Recommendations for the use of SIRI Simple Web Services
	12.5.1 General
	12.5.2 Services useful for device Passenger Information Services
	12.5.3 Response filtering
	12.5.4 Incorporation of reference data in responses
	12.5.5 Multiple functional service deliveries in the same response
	12.5.6 Support a choice of response encodings
	12.5.7 Provide reporting identifiers

	13 Common SIRI elements & Data Types
	13.1 General

	Table 56 SIRI – NETEX equivalents
	13.2 Introduction
	13.3 Base Data Types
	13.3.1 W3C Simple Types

	Table 57 — W3C XML simple data types used in SIR
	13.3.2 SIRI Simple Types

	Table 58 — SIRI simple data types used in SIRI
	13.3.3 NationalLanguageStringStructure — Element
	13.4 Shared Elements & Structures
	13.4.1 FramedVehicleJourneyRef — Element

	Table 59 — FramedVehicleJourneyRef
	13.4.2 Location — Element

	Table 60 — Location
	13.4.3 Error — Element
	13.4.3.1 General

	Table 61 — Error Code
	13.4.3.2 Error Conditions — Elements

	Table 62 — Error Conditions
	13.5 Shared groups of elements
	13.5.1 ServiceInfoGroup — Group

	Table 63 — ServiceInfoGroup — Elements
	13.5.2 JourneyInfoGroup — Group

	Table 64 — JourneyInfoGroup — Elements
	13.5.3 VehicleJourneyInfoGroup — Group

	Table 65 — VehicleJourneyInfoGroup — Elements
	13.5.3.1 FirstOrLastJourney — Allowed values

	Table 66 — FirstOrLastJourney —Allowed Values (SIRI 2.0)
	13.5.4 JourneyPatternInfoGroup — Group

	Table 67 — JourneyPatternInfoGroup — Elements
	13.5.4.1 VehicleMode — Allowed values

	Table 68 — VehicleMode — Allowed Values (SIRI 2.0)
	13.5.5 DisruptionGroup — Group
	13.5.5.1 General

	Table 69 — DisruptionGroup — Elements
	13.5.5.2 FacilityChangeElement — Element

	Table 70 — FacilityChangeElement — Elements
	13.5.5.3 EquipmentStatus — Allowed values

	Table 71 — EquipmentStatus —Allowed Values
	13.5.5.4 MobilityFacility — Allowed values

	Table 72 — MobilityFacility —Allowed Values
	13.5.6 JourneyProgressGroup — Group

	Table 73 — JourneyProgressGroup — Elements
	13.5.6.1 MonitoringError — Allowed values

	Table 74 — MonitoringError —Allowed Values
	13.5.6.2 ConfidenceLevel — Allowed values

	Table 75 — ConfidenceLevel —Allowed Values
	13.5.6.3 ProgressRate — Allowed values

	Table 76 — ProgressRate —Allowed Values
	13.5.6.4 Occupancy — Allowed values

	Table 77 — Occupancy —Allowed Values
	13.5.6.5 CallStatus — Allowed values

	Table 78 — CallStatus —Allowed Values
	13.5.6.6 VehicleStatus — Allowed values

	Table 79 — VehicleStatus —Allowed Values
	13.6 OperationalBlockGroup — Group

	Table 80 — OperationalBlockGroup — Elements
	13.7 OperationalInfoGroup — Group

	Table 81 — OperationalInfoGroup — Elements
	Bibliography

